Filtered by vendor Linux Subscriptions
Total 16294 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-4515 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate command request size In commit 2b9b8f3b68ed ("ksmbd: validate command payload size"), except for SMB2_OPLOCK_BREAK_HE command, the request size of other commands is not checked, it's not expected. Fix it by add check for request size of other commands.
CVE-2023-4130 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix wrong next length validation of ea buffer in smb2_set_ea() There are multiple smb2_ea_info buffers in FILE_FULL_EA_INFORMATION request from client. ksmbd find next smb2_ea_info using ->NextEntryOffset of current smb2_ea_info. ksmbd need to validate buffer length Before accessing the next ea. ksmbd should check buffer length using buf_len, not next variable. next is the start offset of current ea that got from previous ea.
CVE-2023-3867 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out of bounds read in smb2_sess_setup ksmbd does not consider the case of that smb2 session setup is in compound request. If this is the second payload of the compound, OOB read issue occurs while processing the first payload in the smb2_sess_setup().
CVE-2023-3866 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate session id and tree id in the compound request This patch validate session id and tree id in compound request. If first operation in the compound is SMB2 ECHO request, ksmbd bypass session and tree validation. So work->sess and work->tcon could be NULL. If secound request in the compound access work->sess or tcon, It cause NULL pointer dereferecing error.
CVE-2023-3865 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out-of-bound read in smb2_write ksmbd_smb2_check_message doesn't validate hdr->NextCommand. If ->NextCommand is bigger than Offset + Length of smb2 write, It will allow oversized smb2 write length. It will cause OOB read in smb2_write.
CVE-2023-32249 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: not allow guest user on multichannel This patch return STATUS_NOT_SUPPORTED if binding session is guest.
CVE-2025-38196 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: validate buffer count with offset for cloning syzbot reports that it can trigger a WARN_ON() for kmalloc() attempt that's too big: WARNING: CPU: 0 PID: 6488 at mm/slub.c:5024 __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 Modules linked in: CPU: 0 UID: 0 PID: 6488 Comm: syz-executor312 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 lr : __do_kmalloc_node mm/slub.c:-1 [inline] lr : __kvmalloc_node_noprof+0x3b4/0x640 mm/slub.c:5012 sp : ffff80009cfd7a90 x29: ffff80009cfd7ac0 x28: ffff0000dd52a120 x27: 0000000000412dc0 x26: 0000000000000178 x25: ffff7000139faf70 x24: 0000000000000000 x23: ffff800082f4cea8 x22: 00000000ffffffff x21: 000000010cd004a8 x20: ffff0000d75816c0 x19: ffff0000dd52a000 x18: 00000000ffffffff x17: ffff800092f39000 x16: ffff80008adbe9e4 x15: 0000000000000005 x14: 1ffff000139faf1c x13: 0000000000000000 x12: 0000000000000000 x11: ffff7000139faf21 x10: 0000000000000003 x9 : ffff80008f27b938 x8 : 0000000000000002 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 00000000ffffffff x4 : 0000000000400dc0 x3 : 0000000200000000 x2 : 000000010cd004a8 x1 : ffff80008b3ebc40 x0 : 0000000000000001 Call trace: __kvmalloc_node_noprof+0x520/0x640 mm/slub.c:5024 (P) kvmalloc_array_node_noprof include/linux/slab.h:1065 [inline] io_rsrc_data_alloc io_uring/rsrc.c:206 [inline] io_clone_buffers io_uring/rsrc.c:1178 [inline] io_register_clone_buffers+0x484/0xa14 io_uring/rsrc.c:1287 __io_uring_register io_uring/register.c:815 [inline] __do_sys_io_uring_register io_uring/register.c:926 [inline] __se_sys_io_uring_register io_uring/register.c:903 [inline] __arm64_sys_io_uring_register+0x42c/0xea8 io_uring/register.c:903 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 which is due to offset + buffer_count being too large. The registration code checks only the total count of buffers, but given that the indexing is an array, it should also check offset + count. That can't exceed IORING_MAX_REG_BUFFERS either, as there's no way to reach buffers beyond that limit. There's no issue with registrering a table this large, outside of the fact that it's pointless to register buffers that cannot be reached, and that it can trigger this kmalloc() warning for attempting an allocation that is too large.
CVE-2025-38199 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix memory leak due to multiple rx_stats allocation rx_stats for each arsta is allocated when adding a station. arsta->rx_stats will be freed when a station is removed. Redundant allocations are occurring when the same station is added multiple times. This causes ath12k_mac_station_add() to be called multiple times, and rx_stats is allocated each time. As a result there is memory leaks. Prevent multiple allocations of rx_stats when ath12k_mac_station_add() is called repeatedly by checking if rx_stats is already allocated before allocating again. Allocate arsta->rx_stats if arsta->rx_stats is NULL respectively. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
CVE-2025-38201 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: clamp maximum map bucket size to INT_MAX Otherwise, it is possible to hit WARN_ON_ONCE in __kvmalloc_node_noprof() when resizing hashtable because __GFP_NOWARN is unset. Similar to: b541ba7d1f5a ("netfilter: conntrack: clamp maximum hashtable size to INT_MAX")
CVE-2025-38205 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid divide by zero by initializing dummy pitch to 1 [Why] If the dummy values in `populate_dummy_dml_surface_cfg()` aren't updated then they can lead to a divide by zero in downstream callers like CalculateVMAndRowBytes() [How] Initialize dummy value to a value to avoid divide by zero.
CVE-2025-38207 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: fix uprobe pte be overwritten when expanding vma Patch series "Fix uprobe pte be overwritten when expanding vma". This patch (of 4): We encountered a BUG alert triggered by Syzkaller as follows: BUG: Bad rss-counter state mm:00000000b4a60fca type:MM_ANONPAGES val:1 And we can reproduce it with the following steps: 1. register uprobe on file at zero offset 2. mmap the file at zero offset: addr1 = mmap(NULL, 2 * 4096, PROT_NONE, MAP_PRIVATE, fd, 0); 3. mremap part of vma1 to new vma2: addr2 = mremap(addr1, 4096, 2 * 4096, MREMAP_MAYMOVE); 4. mremap back to orig addr1: mremap(addr2, 4096, 4096, MREMAP_MAYMOVE | MREMAP_FIXED, addr1); In step 3, the vma1 range [addr1, addr1 + 4096] will be remap to new vma2 with range [addr2, addr2 + 8192], and remap uprobe anon page from the vma1 to vma2, then unmap the vma1 range [addr1, addr1 + 4096]. In step 4, the vma2 range [addr2, addr2 + 4096] will be remap back to the addr range [addr1, addr1 + 4096]. Since the addr range [addr1 + 4096, addr1 + 8192] still maps the file, it will take vma_merge_new_range to expand the range, and then do uprobe_mmap in vma_complete. Since the merged vma pgoff is also zero offset, it will install uprobe anon page to the merged vma. However, the upcomming move_page_tables step, which use set_pte_at to remap the vma2 uprobe pte to the merged vma, will overwrite the newly uprobe pte in the merged vma, and lead that pte to be orphan. Since the uprobe pte will be remapped to the merged vma, we can remove the unnecessary uprobe_mmap upon merged vma. This problem was first found in linux-6.6.y and also exists in the community syzkaller: https://lore.kernel.org/all/000000000000ada39605a5e71711@google.com/T/
CVE-2018-4878 6 Adobe, Apple, Google and 3 more 11 Flash Player, Macos, Chrome Os and 8 more 2025-11-18 7.8 High
A use-after-free vulnerability was discovered in Adobe Flash Player before 28.0.0.161. This vulnerability occurs due to a dangling pointer in the Primetime SDK related to media player handling of listener objects. A successful attack can lead to arbitrary code execution. This was exploited in the wild in January and February 2018.
CVE-2018-5002 6 Adobe, Apple, Google and 3 more 12 Flash Player, Flash Player Desktop Runtime, Mac Os X and 9 more 2025-11-18 7.8 High
Adobe Flash Player versions 29.0.0.171 and earlier have a Stack-based buffer overflow vulnerability. Successful exploitation could lead to arbitrary code execution in the context of the current user.
CVE-2025-38208 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: add NULL check in automount_fullpath page is checked for null in __build_path_from_dentry_optional_prefix when tcon->origin_fullpath is not set. However, the check is missing when it is set. Add a check to prevent a potential NULL pointer dereference.
CVE-2025-38209 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: remove tag set when second admin queue config fails Commit 104d0e2f6222 ("nvme-fabrics: reset admin connection for secure concatenation") modified nvme_tcp_setup_ctrl() to call nvme_tcp_configure_admin_queue() twice. The first call prepares for DH-CHAP negotitation, and the second call is required for secure concatenation. However, this change triggered BUG KASAN slab-use-after- free in blk_mq_queue_tag_busy_iter(). This BUG can be recreated by repeating the blktests test case nvme/063 a few times [1]. When the BUG happens, nvme_tcp_create_ctrl() fails in the call chain below: nvme_tcp_create_ctrl() nvme_tcp_alloc_ctrl() new=true ... Alloc nvme_tcp_ctrl and admin_tag_set nvme_tcp_setup_ctrl() new=true nvme_tcp_configure_admin_queue() new=true ... Succeed nvme_alloc_admin_tag_set() ... Alloc the tag set for admin_tag_set nvme_stop_keep_alive() nvme_tcp_teardown_admin_queue() remove=false nvme_tcp_configure_admin_queue() new=false nvme_tcp_alloc_admin_queue() ... Fail, but do not call nvme_remove_admin_tag_set() nvme_uninit_ctrl() nvme_put_ctrl() ... Free up the nvme_tcp_ctrl and admin_tag_set The first call of nvme_tcp_configure_admin_queue() succeeds with new=true argument. The second call fails with new=false argument. This second call does not call nvme_remove_admin_tag_set() on failure, due to the new=false argument. Then the admin tag set is not removed. However, nvme_tcp_create_ctrl() assumes that nvme_tcp_setup_ctrl() would call nvme_remove_admin_tag_set(). Then it frees up struct nvme_tcp_ctrl which has admin_tag_set field. Later on, the timeout handler accesses the admin_tag_set field and causes the BUG KASAN slab-use-after-free. To not leave the admin tag set, call nvme_remove_admin_tag_set() when the second nvme_tcp_configure_admin_queue() call fails. Do not return from nvme_tcp_setup_ctrl() on failure. Instead, jump to "destroy_admin" go-to label to call nvme_tcp_teardown_admin_queue() which calls nvme_remove_admin_tag_set().
CVE-2025-38224 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: can: kvaser_pciefd: refine error prone echo_skb_max handling logic echo_skb_max should define the supported upper limit of echo_skb[] allocated inside the netdevice's priv. The corresponding size value provided by this driver to alloc_candev() is KVASER_PCIEFD_CAN_TX_MAX_COUNT which is 17. But later echo_skb_max is rounded up to the nearest power of two (for the max case, that would be 32) and the tx/ack indices calculated further during tx/rx may exceed the upper array boundary. Kasan reported this for the ack case inside kvaser_pciefd_handle_ack_packet(), though the xmit function has actually caught the same thing earlier. BUG: KASAN: slab-out-of-bounds in kvaser_pciefd_handle_ack_packet+0x2d7/0x92a drivers/net/can/kvaser_pciefd.c:1528 Read of size 8 at addr ffff888105e4f078 by task swapper/4/0 CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Not tainted 6.15.0 #12 PREEMPT(voluntary) Call Trace: <IRQ> dump_stack_lvl lib/dump_stack.c:122 print_report mm/kasan/report.c:521 kasan_report mm/kasan/report.c:634 kvaser_pciefd_handle_ack_packet drivers/net/can/kvaser_pciefd.c:1528 kvaser_pciefd_read_packet drivers/net/can/kvaser_pciefd.c:1605 kvaser_pciefd_read_buffer drivers/net/can/kvaser_pciefd.c:1656 kvaser_pciefd_receive_irq drivers/net/can/kvaser_pciefd.c:1684 kvaser_pciefd_irq_handler drivers/net/can/kvaser_pciefd.c:1733 __handle_irq_event_percpu kernel/irq/handle.c:158 handle_irq_event kernel/irq/handle.c:210 handle_edge_irq kernel/irq/chip.c:833 __common_interrupt arch/x86/kernel/irq.c:296 common_interrupt arch/x86/kernel/irq.c:286 </IRQ> Tx max count definitely matters for kvaser_pciefd_tx_avail(), but for seq numbers' generation that's not the case - we're free to calculate them as would be more convenient, not taking tx max count into account. The only downside is that the size of echo_skb[] should correspond to the max seq number (not tx max count), so in some situations a bit more memory would be consumed than could be. Thus make the size of the underlying echo_skb[] sufficient for the rounded max tx value. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2025-38228 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: imagination: fix a potential memory leak in e5010_probe() Add video_device_release() to release the memory allocated by video_device_alloc() if something goes wrong.
CVE-2024-36912 1 Linux 1 Linux Kernel 2025-11-18 8.1 High
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Track decrypted status in vmbus_gpadl In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. In order to make sure callers of vmbus_establish_gpadl() and vmbus_teardown_gpadl() don't return decrypted/shared pages to allocators, add a field in struct vmbus_gpadl to keep track of the decryption status of the buffers. This will allow the callers to know if they should free or leak the pages.
CVE-2025-38232 1 Linux 1 Linux Kernel 2025-11-18 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: fix race between nfsd registration and exports_proc As of now nfsd calls create_proc_exports_entry() at start of init_nfsd and cleanup by remove_proc_entry() at last of exit_nfsd. Which causes kernel OOPs if there is race between below 2 operations: (i) exportfs -r (ii) mount -t nfsd none /proc/fs/nfsd for 5.4 kernel ARM64: CPU 1: el1_irq+0xbc/0x180 arch_counter_get_cntvct+0x14/0x18 running_clock+0xc/0x18 preempt_count_add+0x88/0x110 prep_new_page+0xb0/0x220 get_page_from_freelist+0x2d8/0x1778 __alloc_pages_nodemask+0x15c/0xef0 __vmalloc_node_range+0x28c/0x478 __vmalloc_node_flags_caller+0x8c/0xb0 kvmalloc_node+0x88/0xe0 nfsd_init_net+0x6c/0x108 [nfsd] ops_init+0x44/0x170 register_pernet_operations+0x114/0x270 register_pernet_subsys+0x34/0x50 init_nfsd+0xa8/0x718 [nfsd] do_one_initcall+0x54/0x2e0 CPU 2 : Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 PC is at : exports_net_open+0x50/0x68 [nfsd] Call trace: exports_net_open+0x50/0x68 [nfsd] exports_proc_open+0x2c/0x38 [nfsd] proc_reg_open+0xb8/0x198 do_dentry_open+0x1c4/0x418 vfs_open+0x38/0x48 path_openat+0x28c/0xf18 do_filp_open+0x70/0xe8 do_sys_open+0x154/0x248 Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu(). and same is happening on latest 6.14 kernel as well: [ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty ... [ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48 ... [ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4 ... [ 285.469695] Call trace: [ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P) [ 285.470488] seq_read+0xe0/0x11c [ 285.470675] proc_reg_read+0x9c/0xf0 [ 285.470874] vfs_read+0xc4/0x2fc [ 285.471057] ksys_read+0x6c/0xf4 [ 285.471231] __arm64_sys_read+0x1c/0x28 [ 285.471428] invoke_syscall+0x44/0x100 [ 285.471633] el0_svc_common.constprop.0+0x40/0xe0 [ 285.471870] do_el0_svc_compat+0x1c/0x34 [ 285.472073] el0_svc_compat+0x2c/0x80 [ 285.472265] el0t_32_sync_handler+0x90/0x140 [ 285.472473] el0t_32_sync+0x19c/0x1a0 [ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3) [ 285.473422] ---[ end trace 0000000000000000 ]--- It reproduced simply with below script: while [ 1 ] do /exportfs -r done & while [ 1 ] do insmod /nfsd.ko mount -t nfsd none /proc/fs/nfsd umount /proc/fs/nfsd rmmod nfsd done & So exporting interfaces to user space shall be done at last and cleanup at first place. With change there is no Kernel OOPs.
CVE-2025-38233 1 Linux 1 Linux Kernel 2025-11-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: powerpc64/ftrace: fix clobbered r15 during livepatching While r15 is clobbered always with PPC_FTRACE_OUT_OF_LINE, it is not restored in livepatch sequence leading to not so obvious fails like below: BUG: Unable to handle kernel data access on write at 0xc0000000000f9078 Faulting instruction address: 0xc0000000018ff958 Oops: Kernel access of bad area, sig: 11 [#1] ... NIP: c0000000018ff958 LR: c0000000018ff930 CTR: c0000000009c0790 REGS: c00000005f2e7790 TRAP: 0300 Tainted: G K (6.14.0+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 2822880b XER: 20040000 CFAR: c0000000008addc0 DAR: c0000000000f9078 DSISR: 0a000000 IRQMASK: 1 GPR00: c0000000018f2584 c00000005f2e7a30 c00000000280a900 c000000017ffa488 GPR04: 0000000000000008 0000000000000000 c0000000018f24fc 000000000000000d GPR08: fffffffffffe0000 000000000000000d 0000000000000000 0000000000008000 GPR12: c0000000009c0790 c000000017ffa480 c00000005f2e7c78 c0000000000f9070 GPR16: c00000005f2e7c90 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 c00000005f3efa80 c00000005f2e7c60 c00000005f2e7c88 GPR24: c00000005f2e7c60 0000000000000001 c0000000000f9078 0000000000000000 GPR28: 00007fff97960000 c000000017ffa480 0000000000000000 c0000000000f9078 ... Call Trace: check_heap_object+0x34/0x390 (unreliable) __mutex_unlock_slowpath.isra.0+0xe4/0x230 seq_read_iter+0x430/0xa90 proc_reg_read_iter+0xa4/0x200 vfs_read+0x41c/0x510 ksys_read+0xa4/0x190 system_call_exception+0x1d0/0x440 system_call_vectored_common+0x15c/0x2ec Fix it by restoring r15 always.