Total
34065 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-21480 | 1 Samsung | 4 Android, Mobile, Samsung and 1 more | 2025-09-19 | 8.5 High |
| Improper input validation vulnerability in CertByte prior to SMR Apr-2023 Release 1 allows local attackers to launch privileged activities. | ||||
| CVE-2025-46720 | 1 Keystonejs | 1 Keystone | 2025-09-19 | 3.1 Low |
| Keystone is a content management system for Node.js. Prior to version 6.5.0, `{field}.isFilterable` access control can be bypassed in `update` and `delete` mutations by adding additional unique filters. These filters can be used as an oracle to probe the existence or value of otherwise unreadable fields. Specifically, when a mutation includes a `where` clause with multiple unique filters (e.g. `id` and `email`), Keystone will attempt to match records even if filtering by the latter fields would normally be rejected by `field.isFilterable` or `list.defaultIsFilterable`. This can allow malicious actors to infer the presence of a particular field value when a filter is successful in returning a result. This affects any project relying on the default or dynamic `isFilterable` behavior (at the list or field level) to prevent external users from using the filtering of fields as a discovery mechanism. While this access control is respected during `findMany` operations, it was not completely enforced during `update` and `delete` mutations when accepting more than one unique `where` values in filters. This has no impact on projects using `isFilterable: false` or `defaultIsFilterable: false` for sensitive fields, or for those who have otherwise omitted filtering by these fields from their GraphQL schema. This issue has been patched in `@keystone-6/core` version 6.5.0. To mitigate this issue in older versions where patching is not a viable pathway, set `isFilterable: false` statically for relevant fields to prevent filtering by them earlier in the access control pipeline (that is, don't use functions); set `{field}.graphql.omit.read: true` for relevant fields, which implicitly removes filtering by these fields from the GraphQL schema; and/or deny `update` and `delete` operations for the relevant lists completely. | ||||
| CVE-2025-23041 | 1 Umbraco | 1 Umbraco Forms | 2025-09-19 | 5.8 Medium |
| Umbraco.Forms is a web form framework written for the nuget ecosystem. Character limits configured by editors for short and long answer fields are validated only client-side, not server-side. This issue has been patched in versions 8.13.16, 10.5.7, 13.2.2, and 14.1.2. Users are advised to upgrade. There are no known workarounds for this issue. | ||||
| CVE-2024-35801 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in order to avoid unnecessary writes to the MSR. On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which wipes out any stale state. But the per CPU cached xfd value is not reset, which brings them out of sync. As a consequence a subsequent xfd_update_state() might fail to update the MSR which in turn can result in XRSTOR raising a #NM in kernel space, which crashes the kernel. To fix this, introduce xfd_set_state() to write xfd_state together with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. | ||||
| CVE-2023-52561 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: arm64: dts: qcom: sdm845-db845c: Mark cont splash memory region as reserved Adding a reserved memory region for the framebuffer memory (the splash memory region set up by the bootloader). It fixes a kernel panic (arm-smmu: Unhandled context fault at this particular memory region) reported on DB845c running v5.10.y. | ||||
| CVE-2024-35799 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 6.2 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Prevent crash when disable stream [Why] Disabling stream encoder invokes a function that no longer exists. [How] Check if the function declaration is NULL in disable stream encoder. | ||||
| CVE-2022-48668 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 3.3 Low |
| In the Linux kernel, the following vulnerability has been resolved: smb3: fix temporary data corruption in collapse range collapse range doesn't discard the affected cached region so can risk temporarily corrupting the file data. This fixes xfstest generic/031 I also decided to merge a minor cleanup to this into the same patch (avoiding rereading inode size repeatedly unnecessarily) to make it clearer. | ||||
| CVE-2022-48667 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 3.3 Low |
| In the Linux kernel, the following vulnerability has been resolved: smb3: fix temporary data corruption in insert range insert range doesn't discard the affected cached region so can risk temporarily corrupting file data. Also includes some minor cleanup (avoiding rereading inode size repeatedly unnecessarily) to make it clearer. | ||||
| CVE-2022-48653 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ice: Don't double unplug aux on peer initiated reset In the IDC callback that is accessed when the aux drivers request a reset, the function to unplug the aux devices is called. This function is also called in the ice_prepare_for_reset function. This double call is causing a "scheduling while atomic" BUG. [ 662.676430] ice 0000:4c:00.0 rocep76s0: cqp opcode = 0x1 maj_err_code = 0xffff min_err_code = 0x8003 [ 662.676609] ice 0000:4c:00.0 rocep76s0: [Modify QP Cmd Error][op_code=8] status=-29 waiting=1 completion_err=1 maj=0xffff min=0x8003 [ 662.815006] ice 0000:4c:00.0 rocep76s0: ICE OICR event notification: oicr = 0x10000003 [ 662.815014] ice 0000:4c:00.0 rocep76s0: critical PE Error, GLPE_CRITERR=0x00011424 [ 662.815017] ice 0000:4c:00.0 rocep76s0: Requesting a reset [ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002 [ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002 [ 662.815477] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill 8021q garp mrp stp llc vfat fat rpcrdma intel_rapl_msr intel_rapl_common sunrpc i10nm_edac rdma_ucm nfit ib_srpt libnvdimm ib_isert iscsi_target_mod x86_pkg_temp_thermal intel_powerclamp coretemp target_core_mod snd_hda_intel ib_iser snd_intel_dspcfg libiscsi snd_intel_sdw_acpi scsi_transport_iscsi kvm_intel iTCO_wdt rdma_cm snd_hda_codec kvm iw_cm ipmi_ssif iTCO_vendor_support snd_hda_core irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel snd_hwdep snd_seq snd_seq_device rapl snd_pcm snd_timer isst_if_mbox_pci pcspkr isst_if_mmio irdma intel_uncore idxd acpi_ipmi joydev isst_if_common snd mei_me idxd_bus ipmi_si soundcore i2c_i801 mei ipmi_devintf i2c_smbus i2c_ismt ipmi_msghandler acpi_power_meter acpi_pad rv(OE) ib_uverbs ib_cm ib_core xfs libcrc32c ast i2c_algo_bit drm_vram_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops drm_ttm_helpe r ttm [ 662.815546] nvme nvme_core ice drm crc32c_intel i40e t10_pi wmi pinctrl_emmitsburg dm_mirror dm_region_hash dm_log dm_mod fuse [ 662.815557] Preemption disabled at: [ 662.815558] [<0000000000000000>] 0x0 [ 662.815563] CPU: 37 PID: 0 Comm: swapper/37 Kdump: loaded Tainted: G S OE 5.17.1 #2 [ 662.815566] Hardware name: Intel Corporation D50DNP/D50DNP, BIOS SE5C6301.86B.6624.D18.2111021741 11/02/2021 [ 662.815568] Call Trace: [ 662.815572] <IRQ> [ 662.815574] dump_stack_lvl+0x33/0x42 [ 662.815581] __schedule_bug.cold.147+0x7d/0x8a [ 662.815588] __schedule+0x798/0x990 [ 662.815595] schedule+0x44/0xc0 [ 662.815597] schedule_preempt_disabled+0x14/0x20 [ 662.815600] __mutex_lock.isra.11+0x46c/0x490 [ 662.815603] ? __ibdev_printk+0x76/0xc0 [ib_core] [ 662.815633] device_del+0x37/0x3d0 [ 662.815639] ice_unplug_aux_dev+0x1a/0x40 [ice] [ 662.815674] ice_schedule_reset+0x3c/0xd0 [ice] [ 662.815693] irdma_iidc_event_handler.cold.7+0xb6/0xd3 [irdma] [ 662.815712] ? bitmap_find_next_zero_area_off+0x45/0xa0 [ 662.815719] ice_send_event_to_aux+0x54/0x70 [ice] [ 662.815741] ice_misc_intr+0x21d/0x2d0 [ice] [ 662.815756] __handle_irq_event_percpu+0x4c/0x180 [ 662.815762] handle_irq_event_percpu+0xf/0x40 [ 662.815764] handle_irq_event+0x34/0x60 [ 662.815766] handle_edge_irq+0x9a/0x1c0 [ 662.815770] __common_interrupt+0x62/0x100 [ 662.815774] common_interrupt+0xb4/0xd0 [ 662.815779] </IRQ> [ 662.815780] <TASK> [ 662.815780] asm_common_interrupt+0x1e/0x40 [ 662.815785] RIP: 0010:cpuidle_enter_state+0xd6/0x380 [ 662.815789] Code: 49 89 c4 0f 1f 44 00 00 31 ff e8 65 d7 95 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 64 02 00 00 31 ff e8 ae c5 9c ff fb 45 85 f6 <0f> 88 12 01 00 00 49 63 d6 4c 2b 24 24 48 8d 04 52 48 8d 04 82 49 [ 662.815791] RSP: 0018:ff2c2c4f18edbe80 EFLAGS: 00000202 [ 662.815793] RAX: ff280805df140000 RBX: 0000000000000002 RCX: 000000000000001f [ 662.815795] RDX: 0000009a52da2d08 R ---truncated--- | ||||
| CVE-2022-48645 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: enetc: deny offload of tc-based TSN features on VF interfaces TSN features on the ENETC (taprio, cbs, gate, police) are configured through a mix of command BD ring messages and port registers: enetc_port_rd(), enetc_port_wr(). Port registers are a region of the ENETC memory map which are only accessible from the PCIe Physical Function. They are not accessible from the Virtual Functions. Moreover, attempting to access these registers crashes the kernel: $ echo 1 > /sys/bus/pci/devices/0000\:00\:00.0/sriov_numvfs pci 0000:00:01.0: [1957:ef00] type 00 class 0x020001 fsl_enetc_vf 0000:00:01.0: Adding to iommu group 15 fsl_enetc_vf 0000:00:01.0: enabling device (0000 -> 0002) fsl_enetc_vf 0000:00:01.0 eno0vf0: renamed from eth0 $ tc qdisc replace dev eno0vf0 root taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 900000 sched-entry S 0x80 100000 flags 0x2 Unable to handle kernel paging request at virtual address ffff800009551a08 Internal error: Oops: 96000007 [#1] PREEMPT SMP pc : enetc_setup_tc_taprio+0x170/0x47c lr : enetc_setup_tc_taprio+0x16c/0x47c Call trace: enetc_setup_tc_taprio+0x170/0x47c enetc_setup_tc+0x38/0x2dc taprio_change+0x43c/0x970 taprio_init+0x188/0x1e0 qdisc_create+0x114/0x470 tc_modify_qdisc+0x1fc/0x6c0 rtnetlink_rcv_msg+0x12c/0x390 Split enetc_setup_tc() into separate functions for the PF and for the VF drivers. Also remove enetc_qos.o from being included into enetc-vf.ko, since it serves absolutely no purpose there. | ||||
| CVE-2022-48705 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix crash in chip reset fail In case of drv own fail in reset, we may need to run mac_reset several times. The sequence would trigger system crash as the log below. Because we do not re-enable/schedule "tx_napi" before disable it again, the process would keep waiting for state change in napi_diable(). To avoid the problem and keep status synchronize for each run, goto final resource handling if drv own failed. [ 5857.353423] mt7921e 0000:3b:00.0: driver own failed [ 5858.433427] mt7921e 0000:3b:00.0: Timeout for driver own [ 5859.633430] mt7921e 0000:3b:00.0: driver own failed [ 5859.633444] ------------[ cut here ]------------ [ 5859.633446] WARNING: CPU: 6 at kernel/kthread.c:659 kthread_park+0x11d [ 5859.633717] Workqueue: mt76 mt7921_mac_reset_work [mt7921_common] [ 5859.633728] RIP: 0010:kthread_park+0x11d/0x150 [ 5859.633736] RSP: 0018:ffff8881b676fc68 EFLAGS: 00010202 ...... [ 5859.633766] Call Trace: [ 5859.633768] <TASK> [ 5859.633771] mt7921e_mac_reset+0x176/0x6f0 [mt7921e] [ 5859.633778] mt7921_mac_reset_work+0x184/0x3a0 [mt7921_common] [ 5859.633785] ? mt7921_mac_set_timing+0x520/0x520 [mt7921_common] [ 5859.633794] ? __kasan_check_read+0x11/0x20 [ 5859.633802] process_one_work+0x7ee/0x1320 [ 5859.633810] worker_thread+0x53c/0x1240 [ 5859.633818] kthread+0x2b8/0x370 [ 5859.633824] ? process_one_work+0x1320/0x1320 [ 5859.633828] ? kthread_complete_and_exit+0x30/0x30 [ 5859.633834] ret_from_fork+0x1f/0x30 [ 5859.633842] </TASK> | ||||
| CVE-2023-52763 | 1 Linux | 1 Linux Kernel | 2025-09-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: i3c: master: mipi-i3c-hci: Fix a kernel panic for accessing DAT_data. The `i3c_master_bus_init` function may attach the I2C devices before the I3C bus initialization. In this flow, the DAT `alloc_entry`` will be used before the DAT `init`. Additionally, if the `i3c_master_bus_init` fails, the DAT `cleanup` will execute before the device is detached, which will execue DAT `free_entry` function. The above scenario can cause the driver to use DAT_data when it is NULL. | ||||
| CVE-2023-50895 | 1 Janitza | 1 Gridvis | 2025-09-19 | 7.2 High |
| In Janitza GridVis through 9.0.66, exposed dangerous methods in the de.janitza.pasw.project.server.ServerDatabaseProject project load functionality allow remote authenticated administrative users to execute arbitrary Groovy code. | ||||
| CVE-2024-3689 | 1 Zoneland | 1 O2oa | 2025-09-19 | 3.7 Low |
| A vulnerability classified as problematic has been found in Zhejiang Land Zongheng Network Technology O2OA up to 20240403. Affected is an unknown function of the file /x_portal_assemble_surface/jaxrs/portal/list?v=8.2.3-4-43f4fe3. The manipulation leads to information disclosure. It is possible to launch the attack remotely. The complexity of an attack is rather high. The exploitability is told to be difficult. The exploit has been disclosed to the public and may be used. VDB-260478 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. | ||||
| CVE-2024-27409 | 1 Linux | 1 Linux Kernel | 2025-09-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw-edma: HDMA: Add sync read before starting the DMA transfer in remote setup The Linked list element and pointer are not stored in the same memory as the HDMA controller register. If the doorbell register is toggled before the full write of the linked list a race condition error will occur. In remote setup we can only use a readl to the memory to assure the full write has occurred. | ||||
| CVE-2024-27402 | 1 Linux | 1 Linux Kernel | 2025-09-18 | 5.8 Medium |
| In the Linux kernel, the following vulnerability has been resolved: phonet/pep: fix racy skb_queue_empty() use The receive queues are protected by their respective spin-lock, not the socket lock. This could lead to skb_peek() unexpectedly returning NULL or a pointer to an already dequeued socket buffer. | ||||
| CVE-2023-52658 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Revert "net/mlx5: Block entering switchdev mode with ns inconsistency" This reverts commit 662404b24a4c4d839839ed25e3097571f5938b9b. The revert is required due to the suspicion it is not good for anything and cause crash. | ||||
| CVE-2023-52655 | 1 Linux | 1 Linux Kernel | 2025-09-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: aqc111: check packet for fixup for true limit If a device sends a packet that is inbetween 0 and sizeof(u64) the value passed to skb_trim() as length will wrap around ending up as some very large value. The driver will then proceed to parse the header located at that position, which will either oops or process some random value. The fix is to check against sizeof(u64) rather than 0, which the driver currently does. The issue exists since the introduction of the driver. | ||||
| CVE-2023-52657 | 1 Linux | 1 Linux Kernel | 2025-09-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Revert "drm/amd/pm: resolve reboot exception for si oland" This reverts commit e490d60a2f76bff636c68ce4fe34c1b6c34bbd86. This causes hangs on SI when DC is enabled and errors on driver reboot and power off cycles. | ||||
| CVE-2023-52654 | 1 Linux | 1 Linux Kernel | 2025-09-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io_uring/af_unix: disable sending io_uring over sockets File reference cycles have caused lots of problems for io_uring in the past, and it still doesn't work exactly right and races with unix_stream_read_generic(). The safest fix would be to completely disallow sending io_uring files via sockets via SCM_RIGHT, so there are no possible cycles invloving registered files and thus rendering SCM accounting on the io_uring side unnecessary. | ||||