Total
33973 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-58481 | 1 Samsung | 2 Mobile, Motionphoto | 2025-12-04 | 7.3 High |
| Improper access control in MPRemoteService of MotionPhoto prior to version 4.1.51 allows local attackers to start privileged service. | ||||
| CVE-2025-58482 | 1 Samsung | 2 Mobile, Motionphoto | 2025-12-04 | 7.3 High |
| Improper access control in MPLocalService of MotionPhoto prior to version 4.1.51 allows local attackers to start privileged service. | ||||
| CVE-2025-37156 | 1 Hpe | 1 Arubaos-cx | 2025-12-04 | 6.8 Medium |
| A platform-level denial-of-service (DoS) vulnerability exists in ArubaOS-CX software. Successful exploitation of this vulnerability could allow an attacker with administrative access to execute specific code that renders the switch non-bootable and effectively non-functional. | ||||
| CVE-2025-13640 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-12-04 | 3.5 Low |
| Inappropriate implementation in Passwords in Google Chrome prior to 143.0.7499.41 allowed a local attacker to bypass authentication via physical access to the device. (Chromium security severity: Low) | ||||
| CVE-2025-53939 | 2 Accellion, Kiteworks | 2 Kiteworks, Kiteworks | 2025-12-04 | 6.3 Medium |
| Kiteworks is a private data network (PDN). Prior to version 9.1.0, improper input validation when managing roles of a shared folder could lead to unexpectedly elevate another user's permissions on the share. This issue has been patched in version 9.1.0. | ||||
| CVE-2016-9842 | 8 Apple, Canonical, Debian and 5 more | 22 Iphone Os, Mac Os X, Tvos and 19 more | 2025-12-04 | 8.8 High |
| The inflateMark function in inflate.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving left shifts of negative integers. | ||||
| CVE-2022-50296 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: UM: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS is selected, cpu_max_bits_warn() generates a runtime warning similar as below while we show /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit) instead of NR_CPUS to iterate CPUs. [ 3.052463] ------------[ cut here ]------------ [ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0 [ 3.070072] Modules linked in: efivarfs autofs4 [ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052 [ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000 [ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430 [ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff [ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890 [ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa [ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000 [ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000 [ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000 [ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286 [ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c [ 3.195868] ... [ 3.199917] Call Trace: [ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c [ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88 [ 3.217625] [<900000000023d268>] __warn+0xd0/0x100 [ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc [ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0 [ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4 [ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4 [ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0 [ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100 [ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94 [ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160 [ 3.281824] ---[ end trace 8b484262b4b8c24c ]--- | ||||
| CVE-2022-50297 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2022-50298 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: slimbus: qcom-ngd: cleanup in probe error path Add proper error path in probe() to cleanup resources previously acquired/allocated to fix warnings visible during probe deferral: notifier callback qcom_slim_ngd_ssr_notify already registered WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90 Modules linked in: CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380 Call trace: notifier_chain_register+0x5c/0x90 srcu_notifier_chain_register+0x44/0x90 qcom_register_ssr_notifier+0x38/0x4c qcom_slim_ngd_ctrl_probe+0xd8/0x400 platform_probe+0x6c/0xe0 really_probe+0xbc/0x2d4 __driver_probe_device+0x78/0xe0 driver_probe_device+0x3c/0x12c __device_attach_driver+0xb8/0x120 bus_for_each_drv+0x78/0xd0 __device_attach+0xa8/0x1c0 device_initial_probe+0x18/0x24 bus_probe_device+0xa0/0xac deferred_probe_work_func+0x88/0xc0 process_one_work+0x1d4/0x320 worker_thread+0x2cc/0x44c kthread+0x110/0x114 ret_from_fork+0x10/0x20 | ||||
| CVE-2022-50299 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9 | ||||
| CVE-2022-50302 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL. | ||||
| CVE-2022-50313 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: erofs: fix order >= MAX_ORDER warning due to crafted negative i_size As syzbot reported [1], the root cause is that i_size field is a signed type, and negative i_size is also less than EROFS_BLKSIZ. As a consequence, it's handled as fast symlink unexpectedly. Let's fall back to the generic path to deal with such unusual i_size. [1] https://lore.kernel.org/r/000000000000ac8efa05e7feaa1f@google.com | ||||
| CVE-2022-50314 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nbd: Fix hung when signal interrupts nbd_start_device_ioctl() syzbot reported hung task [1]. The following program is a simplified version of the reproducer: int main(void) { int sv[2], fd; if (socketpair(AF_UNIX, SOCK_STREAM, 0, sv) < 0) return 1; if ((fd = open("/dev/nbd0", 0)) < 0) return 1; if (ioctl(fd, NBD_SET_SIZE_BLOCKS, 0x81) < 0) return 1; if (ioctl(fd, NBD_SET_SOCK, sv[0]) < 0) return 1; if (ioctl(fd, NBD_DO_IT) < 0) return 1; return 0; } When signal interrupt nbd_start_device_ioctl() waiting the condition atomic_read(&config->recv_threads) == 0, the task can hung because it waits the completion of the inflight IOs. This patch fixes the issue by clearing queue, not just shutdown, when signal interrupt nbd_start_device_ioctl(). | ||||
| CVE-2022-50319 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: coresight: trbe: remove cpuhp instance node before remove cpuhp state cpuhp_state_add_instance() and cpuhp_state_remove_instance() should be used in pairs. Or there will lead to the warn on cpuhp_remove_multi_state() since the cpuhp_step list is not empty. The following is the error log with 'rmmod coresight-trbe': Error: Removing state 215 which has instances left. Call trace: __cpuhp_remove_state_cpuslocked+0x144/0x160 __cpuhp_remove_state+0xac/0x100 arm_trbe_device_remove+0x2c/0x60 [coresight_trbe] platform_remove+0x34/0x70 device_remove+0x54/0x90 device_release_driver_internal+0x1e4/0x250 driver_detach+0x5c/0xb0 bus_remove_driver+0x64/0xc0 driver_unregister+0x3c/0x70 platform_driver_unregister+0x20/0x30 arm_trbe_exit+0x1c/0x658 [coresight_trbe] __arm64_sys_delete_module+0x1ac/0x24c invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x58/0x1a0 do_el0_svc+0x38/0xd0 el0_svc+0x2c/0xc0 el0t_64_sync_handler+0x1ac/0x1b0 el0t_64_sync+0x19c/0x1a0 ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2023-53237 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v11_0_hw_fini The gmc.ecc_irq is enabled by firmware per IFWI setting, and the host driver is not privileged to enable/disable the interrupt. So, it is meaningless to use the amdgpu_irq_put function in gmc_v11_0_hw_fini, which also leads to the call trace. [ 102.980303] Call Trace: [ 102.980303] <TASK> [ 102.980304] gmc_v11_0_hw_fini+0x54/0x90 [amdgpu] [ 102.980357] gmc_v11_0_suspend+0xe/0x20 [amdgpu] [ 102.980409] amdgpu_device_ip_suspend_phase2+0x240/0x460 [amdgpu] [ 102.980459] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu] [ 102.980520] amdgpu_device_pre_asic_reset+0xd9/0x490 [amdgpu] [ 102.980573] amdgpu_device_gpu_recover.cold+0x548/0xce6 [amdgpu] [ 102.980687] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu] [ 102.980740] process_one_work+0x21f/0x3f0 [ 102.980741] worker_thread+0x200/0x3e0 [ 102.980742] ? process_one_work+0x3f0/0x3f0 [ 102.980743] kthread+0xfd/0x130 [ 102.980743] ? kthread_complete_and_exit+0x20/0x20 [ 102.980744] ret_from_fork+0x22/0x30 | ||||
| CVE-2022-50322 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: rtc: msc313: Fix function prototype mismatch in msc313_rtc_probe() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. msc313_rtc_probe() was passing clk_disable_unprepare() directly, which did not have matching prototypes for devm_add_action_or_reset()'s callback argument. Refactor to use devm_clk_get_enabled() instead. This was found as a result of Clang's new -Wcast-function-type-strict flag, which is more sensitive than the simpler -Wcast-function-type, which only checks for type width mismatches. | ||||
| CVE-2022-50323 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: do not sense pfmemalloc status in skb_append_pagefrags() skb_append_pagefrags() is used by af_unix and udp sendpage() implementation so far. In commit 326140063946 ("tcp: TX zerocopy should not sense pfmemalloc status") we explained why we should not sense pfmemalloc status for pages owned by user space. We should also use skb_fill_page_desc_noacc() in skb_append_pagefrags() to avoid following KCSAN report: BUG: KCSAN: data-race in lru_add_fn / skb_append_pagefrags write to 0xffffea00058fc1c8 of 8 bytes by task 17319 on cpu 0: __list_add include/linux/list.h:73 [inline] list_add include/linux/list.h:88 [inline] lruvec_add_folio include/linux/mm_inline.h:323 [inline] lru_add_fn+0x327/0x410 mm/swap.c:228 folio_batch_move_lru+0x1e1/0x2a0 mm/swap.c:246 lru_add_drain_cpu+0x73/0x250 mm/swap.c:669 lru_add_drain+0x21/0x60 mm/swap.c:773 free_pages_and_swap_cache+0x16/0x70 mm/swap_state.c:311 tlb_batch_pages_flush mm/mmu_gather.c:59 [inline] tlb_flush_mmu_free mm/mmu_gather.c:256 [inline] tlb_flush_mmu+0x5b2/0x640 mm/mmu_gather.c:263 tlb_finish_mmu+0x86/0x100 mm/mmu_gather.c:363 exit_mmap+0x190/0x4d0 mm/mmap.c:3098 __mmput+0x27/0x1b0 kernel/fork.c:1185 mmput+0x3d/0x50 kernel/fork.c:1207 copy_process+0x19fc/0x2100 kernel/fork.c:2518 kernel_clone+0x166/0x550 kernel/fork.c:2671 __do_sys_clone kernel/fork.c:2812 [inline] __se_sys_clone kernel/fork.c:2796 [inline] __x64_sys_clone+0xc3/0xf0 kernel/fork.c:2796 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffffea00058fc1c8 of 8 bytes by task 17325 on cpu 1: page_is_pfmemalloc include/linux/mm.h:1817 [inline] __skb_fill_page_desc include/linux/skbuff.h:2432 [inline] skb_fill_page_desc include/linux/skbuff.h:2453 [inline] skb_append_pagefrags+0x210/0x600 net/core/skbuff.c:3974 unix_stream_sendpage+0x45e/0x990 net/unix/af_unix.c:2338 kernel_sendpage+0x184/0x300 net/socket.c:3561 sock_sendpage+0x5a/0x70 net/socket.c:1054 pipe_to_sendpage+0x128/0x160 fs/splice.c:361 splice_from_pipe_feed fs/splice.c:415 [inline] __splice_from_pipe+0x222/0x4d0 fs/splice.c:559 splice_from_pipe fs/splice.c:594 [inline] generic_splice_sendpage+0x89/0xc0 fs/splice.c:743 do_splice_from fs/splice.c:764 [inline] direct_splice_actor+0x80/0xa0 fs/splice.c:931 splice_direct_to_actor+0x305/0x620 fs/splice.c:886 do_splice_direct+0xfb/0x180 fs/splice.c:974 do_sendfile+0x3bf/0x910 fs/read_write.c:1255 __do_sys_sendfile64 fs/read_write.c:1323 [inline] __se_sys_sendfile64 fs/read_write.c:1309 [inline] __x64_sys_sendfile64+0x10c/0x150 fs/read_write.c:1309 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x0000000000000000 -> 0xffffea00058fc188 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 17325 Comm: syz-executor.0 Not tainted 6.1.0-rc1-syzkaller-00158-g440b7895c990-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 | ||||
| CVE-2023-53201 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: wraparound mbox producer index Driver is not handling the wraparound of the mbox producer index correctly. Currently the wraparound happens once u32 max is reached. Bit 31 of the producer index register is special and should be set only once for the first command. Because the producer index overflow setting bit31 after a long time, FW goes to initialization sequence and this causes FW hang. Fix is to wraparound the mbox producer index once it reaches u16 max. | ||||
| CVE-2023-53207 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ublk: fail to recover device if queue setup is interrupted In ublk_ctrl_end_recovery(), if wait_for_completion_interruptible() is interrupted by signal, queues aren't setup successfully yet, so we have to fail UBLK_CMD_END_USER_RECOVERY, otherwise kernel oops can be triggered. | ||||
| CVE-2023-53208 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Load L1's TSC multiplier based on L1 state, not L2 state When emulating nested VM-Exit, load L1's TSC multiplier if L1's desired ratio doesn't match the current ratio, not if the ratio L1 is using for L2 diverges from the default. Functionally, the end result is the same as KVM will run L2 with L1's multiplier if L2's multiplier is the default, i.e. checking that L1's multiplier is loaded is equivalent to checking if L2 has a non-default multiplier. However, the assertion that TSC scaling is exposed to L1 is flawed, as userspace can trigger the WARN at will by writing the MSR and then updating guest CPUID to hide the feature (modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking KVM's state_test selftest to do vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0); vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR); after restoring state in a new VM+vCPU yields an endless supply of: ------------[ cut here ]------------ WARNING: CPU: 10 PID: 206939 at arch/x86/kvm/svm/nested.c:1105 nested_svm_vmexit+0x6af/0x720 [kvm_amd] Call Trace: nested_svm_exit_handled+0x102/0x1f0 [kvm_amd] svm_handle_exit+0xb9/0x180 [kvm_amd] kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm] kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm] ? trace_hardirqs_off+0x4d/0xa0 __se_sys_ioctl+0x7a/0xc0 __x64_sys_ioctl+0x21/0x30 do_syscall_64+0x41/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Unlike the nested VMRUN path, hoisting the svm->tsc_scaling_enabled check into the if-statement is wrong as KVM needs to ensure L1's multiplier is loaded in the above scenario. Alternatively, the WARN_ON() could simply be deleted, but that would make KVM's behavior even more subtle, e.g. it's not immediately obvious why it's safe to write MSR_AMD64_TSC_RATIO when checking only tsc_ratio_msr. | ||||