Filtered by vendor Xen
Subscriptions
Total
493 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-42312 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-06 | 6.5 Medium |
| Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
| CVE-2022-42311 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-06 | 6.5 Medium |
| Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
| CVE-2022-42327 | 2 Fedoraproject, Xen | 2 Fedora, Xen | 2025-05-05 | 7.1 High |
| x86: unintended memory sharing between guests On Intel systems that support the "virtualize APIC accesses" feature, a guest can read and write the global shared xAPIC page by moving the local APIC out of xAPIC mode. Access to this shared page bypasses the expected isolation that should exist between two guests. | ||||
| CVE-2022-42317 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-05 | 6.5 Medium |
| Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
| CVE-2022-42316 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-05 | 6.5 Medium |
| Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
| CVE-2022-42318 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-05 | 6.5 Medium |
| Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
| CVE-2022-21166 | 6 Debian, Fedoraproject, Intel and 3 more | 14 Debian Linux, Fedora, Sgx Dcap and 11 more | 2025-05-05 | 5.5 Medium |
| Incomplete cleanup in specific special register write operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
| CVE-2022-21127 | 3 Debian, Intel, Xen | 5 Debian Linux, Sgx Dcap, Sgx Psw and 2 more | 2025-05-05 | 5.5 Medium |
| Incomplete cleanup in specific special register read operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
| CVE-2022-21125 | 6 Debian, Fedoraproject, Intel and 3 more | 14 Debian Linux, Fedora, Sgx Dcap and 11 more | 2025-05-05 | 5.5 Medium |
| Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
| CVE-2022-21123 | 6 Debian, Fedoraproject, Intel and 3 more | 14 Debian Linux, Fedora, Sgx Dcap and 11 more | 2025-05-05 | 5.5 Medium |
| Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
| CVE-2022-42326 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-05 | 5.5 Medium |
| Xenstore: Guests can create arbitrary number of nodes via transactions T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] In case a node has been created in a transaction and it is later deleted in the same transaction, the transaction will be terminated with an error. As this error is encountered only when handling the deleted node at transaction finalization, the transaction will have been performed partially and without updating the accounting information. This will enable a malicious guest to create arbitrary number of nodes. | ||||
| CVE-2015-8104 | 6 Canonical, Debian, Linux and 3 more | 10 Ubuntu Linux, Debian Linux, Linux Kernel and 7 more | 2025-04-23 | 10 Critical |
| The KVM subsystem in the Linux kernel through 4.2.6, and Xen 4.3.x through 4.6.x, allows guest OS users to cause a denial of service (host OS panic or hang) by triggering many #DB (aka Debug) exceptions, related to svm.c. | ||||
| CVE-2017-7228 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| An issue (known as XSA-212) was discovered in Xen, with fixes available for 4.8.x, 4.7.x, 4.6.x, 4.5.x, and 4.4.x. The earlier XSA-29 fix introduced an insufficient check on XENMEM_exchange input, allowing the caller to drive hypervisor memory accesses outside of the guest provided input/output arrays. | ||||
| CVE-2016-10013 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| Xen through 4.8.x allows local 64-bit x86 HVM guest OS users to gain privileges by leveraging mishandling of SYSCALL singlestep during emulation. | ||||
| CVE-2016-10024 | 2 Citrix, Xen | 2 Xenserver, Xen | 2025-04-20 | N/A |
| Xen through 4.8.x allows local x86 PV guest OS kernel administrators to cause a denial of service (host hang or crash) by modifying the instruction stream asynchronously while performing certain kernel operations. | ||||
| CVE-2017-17045 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| An issue was discovered in Xen through 4.9.x allowing HVM guest OS users to gain privileges on the host OS, obtain sensitive information, or cause a denial of service (BUG and host OS crash) by leveraging the mishandling of Populate on Demand (PoD) Physical-to-Machine (P2M) errors. | ||||
| CVE-2017-17046 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| An issue was discovered in Xen through 4.9.x on the ARM platform allowing guest OS users to obtain sensitive information from DRAM after a reboot, because disjoint blocks, and physical addresses that do not start at zero, are mishandled. | ||||
| CVE-2017-14318 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| An issue was discovered in Xen 4.5.x through 4.9.x. The function `__gnttab_cache_flush` handles GNTTABOP_cache_flush grant table operations. It checks to see if the calling domain is the owner of the page that is to be operated on. If it is not, the owner's grant table is checked to see if a grant mapping to the calling domain exists for the page in question. However, the function does not check to see if the owning domain actually has a grant table or not. Some special domains, such as `DOMID_XEN`, `DOMID_IO` and `DOMID_COW` are created without grant tables. Hence, if __gnttab_cache_flush operates on a page owned by these special domains, it will attempt to dereference a NULL pointer in the domain struct. | ||||
| CVE-2017-14319 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| A grant unmapping issue was discovered in Xen through 4.9.x. When removing or replacing a grant mapping, the x86 PV specific path needs to make sure page table entries remain in sync with other accounting done. Although the identity of the page frame was validated correctly, neither the presence of the mapping nor page writability were taken into account. | ||||
| CVE-2017-12855 | 1 Xen | 1 Xen | 2025-04-20 | N/A |
| Xen maintains the _GTF_{read,writ}ing bits as appropriate, to inform the guest that a grant is in use. A guest is expected not to modify the grant details while it is in use, whereas the guest is free to modify/reuse the grant entry when it is not in use. Under some circumstances, Xen will clear the status bits too early, incorrectly informing the guest that the grant is no longer in use. A guest may prematurely believe that a granted frame is safely private again, and reuse it in a way which contains sensitive information, while the domain on the far end of the grant is still using the grant. Xen 4.9, 4.8, 4.7, 4.6, and 4.5 are affected. | ||||