Filtered by vendor Linux Subscriptions
Total 15923 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-50679 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler.
CVE-2022-50676 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit.
CVE-2022-50674 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso.
CVE-2022-50669 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible name leak in ocxl_file_register_afu() If device_register() returns error in ocxl_file_register_afu(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(), and info is freed in info_release().
CVE-2022-50668 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix deadlock due to mbcache entry corruption When manipulating xattr blocks, we can deadlock infinitely looping inside ext4_xattr_block_set() where we constantly keep finding xattr block for reuse in mbcache but we are unable to reuse it because its reference count is too big. This happens because cache entry for the xattr block is marked as reusable (e_reusable set) although its reference count is too big. When this inconsistency happens, this inconsistent state is kept indefinitely and so ext4_xattr_block_set() keeps retrying indefinitely. The inconsistent state is caused by non-atomic update of e_reusable bit. e_reusable is part of a bitfield and e_reusable update can race with update of e_referenced bit in the same bitfield resulting in loss of one of the updates. Fix the problem by using atomic bitops instead. This bug has been around for many years, but it became *much* easier to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr blocks").
CVE-2022-50666 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix QP destroy to wait for all references dropped. Delay QP destroy completion until all siw references to QP are dropped. The calling RDMA core will free QP structure after successful return from siw_qp_destroy() call, so siw must not hold any remaining reference to the QP upon return. A use-after-free was encountered in xfstest generic/460, while testing NFSoRDMA. Here, after a TCP connection drop by peer, the triggered siw_cm_work_handler got delayed until after QP destroy call, referencing a QP which has already freed.
CVE-2022-50656 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfc: pn533: Clear nfc_target before being used Fix a slab-out-of-bounds read that occurs in nla_put() called from nfc_genl_send_target() when target->sensb_res_len, which is duplicated from an nfc_target in pn533, is too large as the nfc_target is not properly initialized and retains garbage values. Clear nfc_targets with memset() before they are used. Found by a modified version of syzkaller. BUG: KASAN: slab-out-of-bounds in nla_put Call Trace: memcpy nla_put nfc_genl_dump_targets genl_lock_dumpit netlink_dump __netlink_dump_start genl_family_rcv_msg_dumpit genl_rcv_msg netlink_rcv_skb genl_rcv netlink_unicast netlink_sendmsg sock_sendmsg ____sys_sendmsg ___sys_sendmsg __sys_sendmsg do_syscall_64
CVE-2022-50654 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix panic due to wrong pageattr of im->image In the scenario where livepatch and kretfunc coexist, the pageattr of im->image is rox after arch_prepare_bpf_trampoline in bpf_trampoline_update, and then modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag will be configured, and arch_prepare_bpf_trampoline will be re-executed. At this time, because the pageattr of im->image is rox, arch_prepare_bpf_trampoline will read and write im->image, which causes a fault. as follows: insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c bpftrace -e 'kretfunc:cmdline_proc_show {}' BUG: unable to handle page fault for address: ffffffffa0206000 PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061 Oops: 0003 [#1] PREEMPT SMP PTI CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5 RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0 RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202 RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000 RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030 RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400 R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8 R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10 FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> bpf_trampoline_update+0x25a/0x6b0 __bpf_trampoline_link_prog+0x101/0x240 bpf_trampoline_link_prog+0x2d/0x50 bpf_tracing_prog_attach+0x24c/0x530 bpf_raw_tp_link_attach+0x73/0x1d0 __sys_bpf+0x100e/0x2570 __x64_sys_bpf+0x1c/0x30 do_syscall_64+0x5b/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd With this patch, when modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset to nx+rw.
CVE-2022-50653 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: atmel-mci: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). So fix this by checking the return value and calling mmc_free_host() in the error path.
CVE-2022-50652 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: uio: uio_dmem_genirq: Fix missing unlock in irq configuration Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in uio_dmem_genirq_irqcontrol()") started calling disable_irq() without holding the spinlock because it can sleep. However, that fix introduced another bug: if interrupt is already disabled and a new disable request comes in, then the spinlock is not unlocked: root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002 [ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc] [ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21 [ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 14.855664] Call Trace: [ 14.855861] <TASK> [ 14.856025] dump_stack_lvl+0x4d/0x67 [ 14.856325] dump_stack+0x14/0x1a [ 14.856583] __schedule_bug.cold+0x4b/0x5c [ 14.856915] __schedule+0xe81/0x13d0 [ 14.857199] ? idr_find+0x13/0x20 [ 14.857456] ? get_work_pool+0x2d/0x50 [ 14.857756] ? __flush_work+0x233/0x280 [ 14.858068] ? __schedule+0xa95/0x13d0 [ 14.858307] ? idr_find+0x13/0x20 [ 14.858519] ? get_work_pool+0x2d/0x50 [ 14.858798] schedule+0x6c/0x100 [ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110 [ 14.859335] ? tty_write_room+0x1f/0x30 [ 14.859598] ? n_tty_poll+0x1ec/0x220 [ 14.859830] ? tty_ldisc_deref+0x1a/0x20 [ 14.860090] schedule_hrtimeout_range+0x17/0x20 [ 14.860373] do_select+0x596/0x840 [ 14.860627] ? __kernel_text_address+0x16/0x50 [ 14.860954] ? poll_freewait+0xb0/0xb0 [ 14.861235] ? poll_freewait+0xb0/0xb0 [ 14.861517] ? rpm_resume+0x49d/0x780 [ 14.861798] ? common_interrupt+0x59/0xa0 [ 14.862127] ? asm_common_interrupt+0x2b/0x40 [ 14.862511] ? __uart_start.isra.0+0x61/0x70 [ 14.862902] ? __check_object_size+0x61/0x280 [ 14.863255] core_sys_select+0x1c6/0x400 [ 14.863575] ? vfs_write+0x1c9/0x3d0 [ 14.863853] ? vfs_write+0x1c9/0x3d0 [ 14.864121] ? _copy_from_user+0x45/0x70 [ 14.864526] do_pselect.constprop.0+0xb3/0xf0 [ 14.864893] ? do_syscall_64+0x6d/0x90 [ 14.865228] ? do_syscall_64+0x6d/0x90 [ 14.865556] __x64_sys_pselect6+0x76/0xa0 [ 14.865906] do_syscall_64+0x60/0x90 [ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50 [ 14.866640] ? do_syscall_64+0x6d/0x90 [ 14.866972] ? do_syscall_64+0x6d/0x90 [ 14.867286] ? do_syscall_64+0x6d/0x90 [ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] stripped [ 14.872959] </TASK> ('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this) The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and it is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt configuration and handling. At the time "uio_dmem_genirq" was introduced, both had the same implementation of the 'uio_info' handlers irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency issue"), which was only applied to "uio_pdrv_genirq", ended up making them a little different. That commit, among other things, changed disable_irq() to disable_irq_nosync() in the implementation of irqcontrol(). The motivation there was to avoid a deadlock between irqcontrol() and handler(), since it added a spinlock in the irq handler, and disable_irq() waits for the completion of the irq handler. By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also avoid the sleeping-whil ---truncated---
CVE-2022-50646 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: hpsa: Fix possible memory leak in hpsa_init_one() The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to clean1 directly, which frees h and leaks the h->reply_map. Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead free h directly.
CVE-2022-50645 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper() As the comment of pci_get_domain_bus_and_slot() says, it returns a PCI device with refcount incremented, so it doesn't need to call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI device needs to be put in the error path.
CVE-2022-50644 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe pm_runtime_get_sync() will increment pm usage counter. Forgetting to putting operation will result in reference leak. Add missing pm_runtime_put_sync in some error paths.
CVE-2022-50639 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io-wq: Fix memory leak in worker creation If the CPU mask allocation for a node fails, then the memory allocated for the 'io_wqe' struct of the current node doesn't get freed on the error handling path, since it has not yet been added to the 'wqes' array. This was spotted when fuzzing v6.1-rc1 with Syzkaller: BUG: memory leak unreferenced object 0xffff8880093d5000 (size 1024): comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720 [<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130 [<000000004e107011>] io_wq_create+0x7b9/0xdc0 [<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d [<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba [<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce [<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80 [<000000008a8a7508>] do_syscall_64+0x5d/0x90 [<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50636 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix pci_device_is_present() for VFs by checking PF pci_device_is_present() previously didn't work for VFs because it reads the Vendor and Device ID, which are 0xffff for VFs, which looks like they aren't present. Check the PF instead. Wei Gong reported that if virtio I/O is in progress when the driver is unbound or "0" is written to /sys/.../sriov_numvfs, the virtio I/O operation hangs, which may result in output like this: task:bash state:D stack: 0 pid: 1773 ppid: 1241 flags:0x00004002 Call Trace: schedule+0x4f/0xc0 blk_mq_freeze_queue_wait+0x69/0xa0 blk_mq_freeze_queue+0x1b/0x20 blk_cleanup_queue+0x3d/0xd0 virtblk_remove+0x3c/0xb0 [virtio_blk] virtio_dev_remove+0x4b/0x80 ... device_unregister+0x1b/0x60 unregister_virtio_device+0x18/0x30 virtio_pci_remove+0x41/0x80 pci_device_remove+0x3e/0xb0 This happened because pci_device_is_present(VF) returned "false" in virtio_pci_remove(), so it called virtio_break_device(). The broken vq meant that vring_interrupt() skipped the vq.callback() that would have completed the virtio I/O operation via virtblk_done(). [bhelgaas: commit log, simplify to always use pci_physfn(), add stable tag]
CVE-2022-50632 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init() tad_pmu_init() won't remove the callback added by cpuhp_setup_state_multi() when platform_driver_register() failed. Remove the callback by cpuhp_remove_multi_state() in fail path. Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus: arm-ccn: Prevent hotplug callback leak")
CVE-2022-50631 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of fdt buffer This is reported by kmemleak detector: unreferenced object 0xff60000082864000 (size 9588): comm "kexec", pid 146, jiffies 4294900634 (age 64.788s) hex dump (first 32 bytes): d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@ 00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............ backtrace: [<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e [<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4 [<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6 [<00000000f01e68b4>] __kmalloc+0x5c2/0x62a [<000000002bd497b2>] kvmalloc_node+0x66/0xd6 [<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea [<00000000e1166bde>] elf_kexec_load+0x206/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt. While it's not freed back to system when kexec kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing riscv specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there.
CVE-2025-40344 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Disable periods-elapsed work when closing PCM avs_dai_fe_shutdown() handles the shutdown procedure for HOST HDAudio stream while period-elapsed work services its IRQs. As the former frees the DAI's private context, these two operations shall be synchronized to avoid slab-use-after-free or worse errors.
CVE-2025-40338 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Do not share the name pointer between components By sharing 'name' directly, tearing down components may lead to use-after-free errors. Duplicate the name to avoid that. At the same time, update the order of operations - since commit cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via config") the framework does not override component->name if set before invoking the initializer.
CVE-2025-40341 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: futex: Don't leak robust_list pointer on exec race sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access() to check if the calling task is allowed to access another task's robust_list pointer. This check is racy against a concurrent exec() in the target process. During exec(), a task may transition from a non-privileged binary to a privileged one (e.g., setuid binary) and its credentials/memory mappings may change. If get_robust_list() performs ptrace_may_access() before this transition, it may erroneously allow access to sensitive information after the target becomes privileged. A racy access allows an attacker to exploit a window during which ptrace_may_access() passes before a target process transitions to a privileged state via exec(). For example, consider a non-privileged task T that is about to execute a setuid-root binary. An attacker task A calls get_robust_list(T) while T is still unprivileged. Since ptrace_may_access() checks permissions based on current credentials, it succeeds. However, if T begins exec immediately afterwards, it becomes privileged and may change its memory mappings. Because get_robust_list() proceeds to access T->robust_list without synchronizing with exec() it may read user-space pointers from a now-privileged process. This violates the intended post-exec access restrictions and could expose sensitive memory addresses or be used as a primitive in a larger exploit chain. Consequently, the race can lead to unauthorized disclosure of information across privilege boundaries and poses a potential security risk. Take a read lock on signal->exec_update_lock prior to invoking ptrace_may_access() and accessing the robust_list/compat_robust_list. This ensures that the target task's exec state remains stable during the check, allowing for consistent and synchronized validation of credentials.