Filtered by vendor Linux Subscriptions
Total 15923 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-50583 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md/raid0, raid10: Don't set discard sectors for request queue It should use disk_stack_limits to get a proper max_discard_sectors rather than setting a value by stack drivers. And there is a bug. If all member disks are rotational devices, raid0/raid10 set max_discard_sectors. So the member devices are not ssd/nvme, but raid0/raid10 export the wrong value. It reports warning messages in function __blkdev_issue_discard when mkfs.xfs like this: [ 4616.022599] ------------[ cut here ]------------ [ 4616.027779] WARNING: CPU: 4 PID: 99634 at block/blk-lib.c:50 __blkdev_issue_discard+0x16a/0x1a0 [ 4616.140663] RIP: 0010:__blkdev_issue_discard+0x16a/0x1a0 [ 4616.146601] Code: 24 4c 89 20 31 c0 e9 fe fe ff ff c1 e8 09 8d 48 ff 4c 89 f0 4c 09 e8 48 85 c1 0f 84 55 ff ff ff b8 ea ff ff ff e9 df fe ff ff <0f> 0b 48 8d 74 24 08 e8 ea d6 00 00 48 c7 c6 20 1e 89 ab 48 c7 c7 [ 4616.167567] RSP: 0018:ffffaab88cbffca8 EFLAGS: 00010246 [ 4616.173406] RAX: ffff9ba1f9e44678 RBX: 0000000000000000 RCX: ffff9ba1c9792080 [ 4616.181376] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ba1c9792080 [ 4616.189345] RBP: 0000000000000cc0 R08: ffffaab88cbffd10 R09: 0000000000000000 [ 4616.197317] R10: 0000000000000012 R11: 0000000000000000 R12: 0000000000000000 [ 4616.205288] R13: 0000000000400000 R14: 0000000000000cc0 R15: ffff9ba1c9792080 [ 4616.213259] FS: 00007f9a5534e980(0000) GS:ffff9ba1b7c80000(0000) knlGS:0000000000000000 [ 4616.222298] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4616.228719] CR2: 000055a390a4c518 CR3: 0000000123e40006 CR4: 00000000001706e0 [ 4616.236689] Call Trace: [ 4616.239428] blkdev_issue_discard+0x52/0xb0 [ 4616.244108] blkdev_common_ioctl+0x43c/0xa00 [ 4616.248883] blkdev_ioctl+0x116/0x280 [ 4616.252977] __x64_sys_ioctl+0x8a/0xc0 [ 4616.257163] do_syscall_64+0x5c/0x90 [ 4616.261164] ? handle_mm_fault+0xc5/0x2a0 [ 4616.265652] ? do_user_addr_fault+0x1d8/0x690 [ 4616.270527] ? do_syscall_64+0x69/0x90 [ 4616.274717] ? exc_page_fault+0x62/0x150 [ 4616.279097] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 4616.284748] RIP: 0033:0x7f9a55398c6b
CVE-2022-50615 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map() pci_get_device() will increase the reference count for the returned pci_dev, so snr_uncore_get_mc_dev() will return a pci_dev with its reference count increased. We need to call pci_dev_put() to decrease the reference count. Let's add the missing pci_dev_put().
CVE-2022-50616 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Use different devices for resource allocation and DT lookup Following by the below discussion, there's the potential UAF issue between regulator and mfd. https://lore.kernel.org/all/20221128143601.1698148-1-yangyingliang@huawei.com/ From the analysis of Yingliang CPU A |CPU B mt6370_probe() | devm_mfd_add_devices() | |mt6370_regulator_probe() | regulator_register() | //allocate init_data and add it to devres | regulator_of_get_init_data() i2c_unregister_device() | device_del() | devres_release_all() | // init_data is freed | release_nodes() | | // using init_data causes UAF | regulator_register() It's common to use mfd core to create child device for the regulator. In order to do the DT lookup for init data, the child that registered the regulator would pass its parent as the parameter. And this causes init data resource allocated to its parent, not itself. The issue happen when parent device is going to release and regulator core is still doing some operation of init data constraint for the regulator of child device. To fix it, this patch expand 'regulator_register' API to use the different devices for init data allocation and DT lookup.
CVE-2022-50617 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/powerplay/psm: Fix memory leak in power state init Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power state init") made the power state init function return early in case of failure to get an entry from the powerplay table, but it missed to clean up the allocated memory for the current power state before returning.
CVE-2022-50626 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: fix memory leak in dvb_usb_adapter_init() Syzbot reports a memory leak in "dvb_usb_adapter_init()". The leak is due to not accounting for and freeing current iteration's adapter->priv in case of an error. Currently if an error occurs, it will exit before incrementing "num_adapters_initalized", which is used as a reference counter to free all adap->priv in "dvb_usb_adapter_exit()". There are multiple error paths that can exit from before incrementing the counter. Including the error handling paths for "dvb_usb_adapter_stream_init()", "dvb_usb_adapter_dvb_init()" and "dvb_usb_adapter_frontend_init()" within "dvb_usb_adapter_init()". This means that in case of an error in any of these functions the current iteration is not accounted for and the current iteration's adap->priv is not freed. Fix this by freeing the current iteration's adap->priv in the "stream_init_err:" label in the error path. The rest of the (accounted for) adap->priv objects are freed in dvb_usb_adapter_exit() as expected using the num_adapters_initalized variable. Syzbot report: BUG: memory leak unreferenced object 0xffff8881172f1a00 (size 512): comm "kworker/0:2", pid 139, jiffies 4294994873 (age 10.960s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff844af012>] dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:75 [inline] [<ffffffff844af012>] dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:184 [inline] [<ffffffff844af012>] dvb_usb_device_init.cold+0x4e5/0x79e drivers/media/usb/dvb-usb/dvb-usb-init.c:308 [<ffffffff830db21d>] dib0700_probe+0x8d/0x1b0 drivers/media/usb/dvb-usb/dib0700_core.c:883 [<ffffffff82d3fdc7>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396 [<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline] [<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621 [<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline] [<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752 [<ffffffff8274af6a>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:782 [<ffffffff8274b786>] __device_attach_driver+0xf6/0x140 drivers/base/dd.c:899 [<ffffffff82747c87>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427 [<ffffffff8274b352>] __device_attach+0x122/0x260 drivers/base/dd.c:970 [<ffffffff827498f6>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487 [<ffffffff82745cdb>] device_add+0x5fb/0xdf0 drivers/base/core.c:3405 [<ffffffff82d3d202>] usb_set_configuration+0x8f2/0xb80 drivers/usb/core/message.c:2170 [<ffffffff82d4dbfc>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238 [<ffffffff82d3f49c>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293 [<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline] [<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621 [<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline] [<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752
CVE-2022-50628 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/gud: Fix UBSAN warning UBSAN complains about invalid value for bool: [ 101.165172] [drm] Initialized gud 1.0.0 20200422 for 2-3.2:1.0 on minor 1 [ 101.213360] gud 2-3.2:1.0: [drm] fb1: guddrmfb frame buffer device [ 101.213426] usbcore: registered new interface driver gud [ 101.989431] ================================================================================ [ 101.989441] UBSAN: invalid-load in linux/include/linux/iosys-map.h:253:9 [ 101.989447] load of value 121 is not a valid value for type '_Bool' [ 101.989451] CPU: 1 PID: 455 Comm: kworker/1:6 Not tainted 5.18.0-rc5-gud-5.18-rc5 #3 [ 101.989456] Hardware name: Hewlett-Packard HP EliteBook 820 G1/1991, BIOS L71 Ver. 01.44 04/12/2018 [ 101.989459] Workqueue: events_long gud_flush_work [gud] [ 101.989471] Call Trace: [ 101.989474] <TASK> [ 101.989479] dump_stack_lvl+0x49/0x5f [ 101.989488] dump_stack+0x10/0x12 [ 101.989493] ubsan_epilogue+0x9/0x3b [ 101.989498] __ubsan_handle_load_invalid_value.cold+0x44/0x49 [ 101.989504] dma_buf_vmap.cold+0x38/0x3d [ 101.989511] ? find_busiest_group+0x48/0x300 [ 101.989520] drm_gem_shmem_vmap+0x76/0x1b0 [drm_shmem_helper] [ 101.989528] drm_gem_shmem_object_vmap+0x9/0xb [drm_shmem_helper] [ 101.989535] drm_gem_vmap+0x26/0x60 [drm] [ 101.989594] drm_gem_fb_vmap+0x47/0x150 [drm_kms_helper] [ 101.989630] gud_prep_flush+0xc1/0x710 [gud] [ 101.989639] ? _raw_spin_lock+0x17/0x40 [ 101.989648] gud_flush_work+0x1e0/0x430 [gud] [ 101.989653] ? __switch_to+0x11d/0x470 [ 101.989664] process_one_work+0x21f/0x3f0 [ 101.989673] worker_thread+0x200/0x3e0 [ 101.989679] ? rescuer_thread+0x390/0x390 [ 101.989684] kthread+0xfd/0x130 [ 101.989690] ? kthread_complete_and_exit+0x20/0x20 [ 101.989696] ret_from_fork+0x22/0x30 [ 101.989706] </TASK> [ 101.989708] ================================================================================ The source of this warning is in iosys_map_clear() called from dma_buf_vmap(). It conditionally sets values based on map->is_iomem. The iosys_map variables are allocated uninitialized on the stack leading to ->is_iomem having all kinds of values and not only 0/1. Fix this by zeroing the iosys_map variables.
CVE-2023-53746 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/vfio-ap: fix memory leak in vfio_ap device driver The device release callback function invoked to release the matrix device uses the dev_get_drvdata(device *dev) function to retrieve the pointer to the vfio_matrix_dev object in order to free its storage. The problem is, this object is not stored as drvdata with the device; since the kfree function will accept a NULL pointer, the memory for the vfio_matrix_dev object is never freed. Since the device being released is contained within the vfio_matrix_dev object, the container_of macro will be used to retrieve its pointer.
CVE-2023-53750 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pinctrl: freescale: Fix a memory out of bounds when num_configs is 1 The config passed in by pad wakeup is 1, when num_configs is 1, Configuration [1] should not be fetched, which will be detected by KASAN as a memory out of bounds condition. Modify to get configs[1] when num_configs is 2.
CVE-2023-53754 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix ioremap issues in lpfc_sli4_pci_mem_setup() When if_type equals zero and pci_resource_start(pdev, PCI_64BIT_BAR4) returns false, drbl_regs_memmap_p is not remapped. This passes a NULL pointer to iounmap(), which can trigger a WARN() on certain arches. When if_type equals six and pci_resource_start(pdev, PCI_64BIT_BAR4) returns true, drbl_regs_memmap_p may has been remapped and ctrl_regs_memmap_p is not remapped. This is a resource leak and passes a NULL pointer to iounmap(). To fix these issues, we need to add null checks before iounmap(), and change some goto labels.
CVE-2023-53756 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Fix crash due to uninitialized current_vmcs KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as a nested hypervisor on top of Hyper-V. When MSR bitmap is updated, evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark that the msr bitmap was changed. vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr -> vmx_msr_bitmap_l01_changed which in the end calls this function. The function checks for current_vmcs if it is null but the check is insufficient because current_vmcs is not initialized. Because of this, the code might incorrectly write to the structure pointed by current_vmcs value left by another task. Preemption is not disabled, the current task can be preempted and moved to another CPU while current_vmcs is accessed multiple times from evmcs_touch_msr_bitmap() which leads to crash. The manipulation of MSR bitmaps by callers happens only for vmcs01 so the solution is to use vmx->vmcs01.vmcs instead of current_vmcs. BUG: kernel NULL pointer dereference, address: 0000000000000338 PGD 4e1775067 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI ... RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel] ... Call Trace: vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel] vmx_vcpu_create+0xe6/0x540 [kvm_intel] kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm] kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm] kvm_vm_ioctl+0x53f/0x790 [kvm] __x64_sys_ioctl+0x8a/0xc0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2023-53758 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: atmel-quadspi: Free resources even if runtime resume failed in .remove() An early error exit in atmel_qspi_remove() doesn't prevent the device unbind. So this results in an spi controller with an unbound parent and unmapped register space (because devm_ioremap_resource() is undone). So using the remaining spi controller probably results in an oops. Instead unregister the controller unconditionally and only skip hardware access and clk disable. Also add a warning about resume failing and return zero unconditionally. The latter has the only effect to suppress a less helpful error message by the spi core.
CVE-2023-53760 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: mcq: Fix &hwq->cq_lock deadlock issue When ufshcd_err_handler() is executed, CQ event interrupt can enter waiting for the same lock. This can happen in ufshcd_handle_mcq_cq_events() and also in ufs_mtk_mcq_intr(). The following warning message will be generated when &hwq->cq_lock is used in IRQ context with IRQ enabled. Use ufshcd_mcq_poll_cqe_lock() with spin_lock_irqsave instead of spin_lock to resolve the deadlock issue. [name:lockdep&]WARNING: inconsistent lock state [name:lockdep&]-------------------------------- [name:lockdep&]inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. [name:lockdep&]kworker/u16:4/260 [HC0[0]:SC0[0]:HE1:SE1] takes: ffffff8028444600 (&hwq->cq_lock){?.-.}-{2:2}, at: ufshcd_mcq_poll_cqe_lock+0x30/0xe0 [name:lockdep&]{IN-HARDIRQ-W} state was registered at: lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufs_mtk_mcq_intr+0x60/0x1bc [ufs_mediatek_mod] __handle_irq_event_percpu+0x140/0x3ec handle_irq_event+0x50/0xd8 handle_fasteoi_irq+0x148/0x2b0 generic_handle_domain_irq+0x4c/0x6c gic_handle_irq+0x58/0x134 call_on_irq_stack+0x40/0x74 do_interrupt_handler+0x84/0xe4 el1_interrupt+0x3c/0x78 <snip> Possible unsafe locking scenario: CPU0 ---- lock(&hwq->cq_lock); <Interrupt> lock(&hwq->cq_lock); *** DEADLOCK *** 2 locks held by kworker/u16:4/260: [name:lockdep&] stack backtrace: CPU: 7 PID: 260 Comm: kworker/u16:4 Tainted: G S W OE 6.1.17-mainline-android14-2-g277223301adb #1 Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0x10c/0x160 show_stack+0x20/0x30 dump_stack_lvl+0x98/0xd8 dump_stack+0x20/0x60 print_usage_bug+0x584/0x76c mark_lock_irq+0x488/0x510 mark_lock+0x1ec/0x25c __lock_acquire+0x4d8/0xffc lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufshcd_poll+0x68/0x1b0 ufshcd_transfer_req_compl+0x9c/0xc8 ufshcd_err_handler+0x3bc/0xea0 process_one_work+0x2f4/0x7e8 worker_thread+0x234/0x450 kthread+0x110/0x134 ret_from_fork+0x10/0x20
CVE-2023-53761 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: USB: usbtmc: Fix direction for 0-length ioctl control messages The syzbot fuzzer found a problem in the usbtmc driver: When a user submits an ioctl for a 0-length control transfer, the driver does not check that the direction is set to OUT: ------------[ cut here ]------------ usb 3-1: BOGUS control dir, pipe 80000b80 doesn't match bRequestType fd WARNING: CPU: 0 PID: 5100 at drivers/usb/core/urb.c:411 usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Modules linked in: CPU: 0 PID: 5100 Comm: syz-executor428 Not tainted 6.3.0-syzkaller-12049-g58390c8ce1bd #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023 RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Code: 7c 24 40 e8 1b 13 5c fb 48 8b 7c 24 40 e8 21 1d f0 fe 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 e0 b5 fc 8a e8 19 c8 23 fb <0f> 0b e9 9f ee ff ff e8 ed 12 5c fb 0f b6 1d 12 8a 3c 08 31 ff 41 RSP: 0018:ffffc90003d2fb00 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8880789e9058 RCX: 0000000000000000 RDX: ffff888029593b80 RSI: ffffffff814c1447 RDI: 0000000000000001 RBP: ffff88801ea742f8 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffff88802915e528 R13: 00000000000000fd R14: 0000000080000b80 R15: ffff8880222b3100 FS: 0000555556ca63c0(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9ef4d18150 CR3: 0000000073e5b000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_internal_control_msg drivers/usb/core/message.c:102 [inline] usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153 usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1954 [inline] usbtmc_ioctl+0x1b3d/0x2840 drivers/usb/class/usbtmc.c:2097 To fix this, we must override the direction in the bRequestType field of the control request structure when the length is 0.
CVE-2023-53763 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "f2fs: fix to do sanity check on extent cache correctly" syzbot reports a f2fs bug as below: UBSAN: array-index-out-of-bounds in fs/f2fs/f2fs.h:3275:19 index 1409 is out of range for type '__le32[923]' (aka 'unsigned int[923]') Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348 inline_data_addr fs/f2fs/f2fs.h:3275 [inline] __recover_inline_status fs/f2fs/inode.c:113 [inline] do_read_inode fs/f2fs/inode.c:480 [inline] f2fs_iget+0x4730/0x48b0 fs/f2fs/inode.c:604 f2fs_fill_super+0x640e/0x80c0 fs/f2fs/super.c:4601 mount_bdev+0x276/0x3b0 fs/super.c:1391 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 do_new_mount+0x28f/0xae0 fs/namespace.c:3335 do_mount fs/namespace.c:3675 [inline] __do_sys_mount fs/namespace.c:3884 [inline] __se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The issue was bisected to: commit d48a7b3a72f121655d95b5157c32c7d555e44c05 Author: Chao Yu <chao@kernel.org> Date: Mon Jan 9 03:49:20 2023 +0000 f2fs: fix to do sanity check on extent cache correctly The root cause is we applied both v1 and v2 of the patch, v2 is the right fix, so it needs to revert v1 in order to fix reported issue. v1: commit d48a7b3a72f1 ("f2fs: fix to do sanity check on extent cache correctly") https://lore.kernel.org/lkml/20230109034920.492914-1-chao@kernel.org/ v2: commit 269d11948100 ("f2fs: fix to do sanity check on extent cache correctly") https://lore.kernel.org/lkml/20230207134808.1827869-1-chao@kernel.org/
CVE-2023-53765 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dm cache: free background tracker's queued work in btracker_destroy Otherwise the kernel can BUG with: [ 2245.426978] ============================================================================= [ 2245.435155] BUG bt_work (Tainted: G B W ): Objects remaining in bt_work on __kmem_cache_shutdown() [ 2245.445233] ----------------------------------------------------------------------------- [ 2245.445233] [ 2245.454879] Slab 0x00000000b0ce2b30 objects=64 used=2 fp=0x000000000a3c6a4e flags=0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff) [ 2245.467300] CPU: 7 PID: 10805 Comm: lvm Kdump: loaded Tainted: G B W 6.0.0-rc2 #19 [ 2245.476078] Hardware name: Dell Inc. PowerEdge R7525/0590KW, BIOS 2.5.6 10/06/2021 [ 2245.483646] Call Trace: [ 2245.486100] <TASK> [ 2245.488206] dump_stack_lvl+0x34/0x48 [ 2245.491878] slab_err+0x95/0xcd [ 2245.495028] __kmem_cache_shutdown.cold+0x31/0x136 [ 2245.499821] kmem_cache_destroy+0x49/0x130 [ 2245.503928] btracker_destroy+0x12/0x20 [dm_cache] [ 2245.508728] smq_destroy+0x15/0x60 [dm_cache_smq] [ 2245.513435] dm_cache_policy_destroy+0x12/0x20 [dm_cache] [ 2245.518834] destroy+0xc0/0x110 [dm_cache] [ 2245.522933] dm_table_destroy+0x5c/0x120 [dm_mod] [ 2245.527649] __dm_destroy+0x10e/0x1c0 [dm_mod] [ 2245.532102] dev_remove+0x117/0x190 [dm_mod] [ 2245.536384] ctl_ioctl+0x1a2/0x290 [dm_mod] [ 2245.540579] dm_ctl_ioctl+0xa/0x20 [dm_mod] [ 2245.544773] __x64_sys_ioctl+0x8a/0xc0 [ 2245.548524] do_syscall_64+0x5c/0x90 [ 2245.552104] ? syscall_exit_to_user_mode+0x12/0x30 [ 2245.556897] ? do_syscall_64+0x69/0x90 [ 2245.560648] ? do_syscall_64+0x69/0x90 [ 2245.564394] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 2245.569447] RIP: 0033:0x7fe52583ec6b ... [ 2245.646771] ------------[ cut here ]------------ [ 2245.651395] kmem_cache_destroy bt_work: Slab cache still has objects when called from btracker_destroy+0x12/0x20 [dm_cache] [ 2245.651408] WARNING: CPU: 7 PID: 10805 at mm/slab_common.c:478 kmem_cache_destroy+0x128/0x130 Found using: lvm2-testsuite --only "cache-single-split.sh" Ben bisected and found that commit 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock") first exposed dm-cache's incomplete cleanup of its background tracker work objects.
CVE-2023-53768 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regmap-irq: Fix out-of-bounds access when allocating config buffers When allocating the 2D array for handling IRQ type registers in regmap_add_irq_chip_fwnode(), the intent is to allocate a matrix with num_config_bases rows and num_config_regs columns. This is currently handled by allocating a buffer to hold a pointer for each row (i.e. num_config_bases). After that, the logic attempts to allocate the memory required to hold the register configuration for each row. However, instead of doing this allocation for each row (i.e. num_config_bases allocations), the logic erroneously does this allocation num_config_regs number of times. This scenario can lead to out-of-bounds accesses when num_config_regs is greater than num_config_bases. Fix this by updating the terminating condition of the loop that allocates the memory for holding the register configuration to allocate memory only for each row in the matrix. Amit Pundir reported a crash that was occurring on his db845c device due to memory corruption (see "Closes" tag for Amit's report). The KASAN report below helped narrow it down to this issue: [ 14.033877][ T1] ================================================================== [ 14.042507][ T1] BUG: KASAN: invalid-access in regmap_add_irq_chip_fwnode+0x594/0x1364 [ 14.050796][ T1] Write of size 8 at addr 06ffff8081021850 by task init/1 [ 14.242004][ T1] The buggy address belongs to the object at ffffff8081021850 [ 14.242004][ T1] which belongs to the cache kmalloc-8 of size 8 [ 14.255669][ T1] The buggy address is located 0 bytes inside of [ 14.255669][ T1] 8-byte region [ffffff8081021850, ffffff8081021858)
CVE-2025-40305 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: 9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq) if list_empty(&m->req_list). However, if the pipe is full, we need to read more data and this used to work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer if the pipe is still full"). p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before the commit above) triggered the unnecessary wakeup. This wakeup calls p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux() will notice EPOLLIN and schedule_work(&m->rq). This no longer happens after the optimization above, change p9_fd_request() to use p9_poll_mux() instead of only checking for EPOLLOUT.
CVE-2025-40308 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: bcsp: receive data only if registered Currently, bcsp_recv() can be called even when the BCSP protocol has not been registered. This leads to a NULL pointer dereference, as shown in the following stack trace: KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f] RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590 Call Trace: <TASK> hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627 tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290 tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f To prevent this, ensure that the HCI_UART_REGISTERED flag is set before processing received data. If the protocol is not registered, return -EUNATCH.
CVE-2025-40315 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix epfile null pointer access after ep enable. A race condition occurs when ffs_func_eps_enable() runs concurrently with ffs_data_reset(). The ffs_data_clear() called in ffs_data_reset() sets ffs->epfiles to NULL before resetting ffs->eps_count to 0, leading to a NULL pointer dereference when accessing epfile->ep in ffs_func_eps_enable() after successful usb_ep_enable(). The ffs->epfiles pointer is set to NULL in both ffs_data_clear() and ffs_data_close() functions, and its modification is protected by the spinlock ffs->eps_lock. And the whole ffs_func_eps_enable() function is also protected by ffs->eps_lock. Thus, add NULL pointer handling for ffs->epfiles in the ffs_func_eps_enable() function to fix issues
CVE-2025-40316 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix device use-after-free on unbind A recent change fixed device reference leaks when looking up drm platform device driver data during bind() but failed to remove a partial fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix kobject put for component sub-drivers"). This results in a reference imbalance on component bind() failures and on unbind() which could lead to a user-after-free. Make sure to only drop the references after retrieving the driver data by effectively reverting the previous partial fix. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.