Total
6704 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-6932 | 3 Debian, Linux, Redhat | 5 Debian Linux, Linux Kernel, Enterprise Linux and 2 more | 2025-11-25 | 7.8 High |
| A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation. A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread. We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1. | ||||
| CVE-2023-52935 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: mm/khugepaged: fix ->anon_vma race If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires it to be locked. Page table traversal is allowed under any one of the mmap lock, the anon_vma lock (if the VMA is associated with an anon_vma), and the mapping lock (if the VMA is associated with a mapping); and so to be able to remove page tables, we must hold all three of them. retract_page_tables() bails out if an ->anon_vma is attached, but does this check before holding the mmap lock (as the comment above the check explains). If we racily merged an existing ->anon_vma (shared with a child process) from a neighboring VMA, subsequent rmap traversals on pages belonging to the child will be able to see the page tables that we are concurrently removing while assuming that nothing else can access them. Repeat the ->anon_vma check once we hold the mmap lock to ensure that there really is no concurrent page table access. Hitting this bug causes a lockdep warning in collapse_and_free_pmd(), in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)". It can also lead to use-after-free access. | ||||
| CVE-2023-52757 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when releasing mids All release_mid() callers seem to hold a reference of @mid so there is no need to call kref_put(&mid->refcount, __release_mid) under @server->mid_lock spinlock. If they don't, then an use-after-free bug would have occurred anyways. By getting rid of such spinlock also fixes a potential deadlock as shown below CPU 0 CPU 1 ------------------------------------------------------------------ cifs_demultiplex_thread() cifs_debug_data_proc_show() release_mid() spin_lock(&server->mid_lock); spin_lock(&cifs_tcp_ses_lock) spin_lock(&server->mid_lock) __release_mid() smb2_find_smb_tcon() spin_lock(&cifs_tcp_ses_lock) *deadlock* | ||||
| CVE-2023-52752 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free bug in cifs_debug_data_proc_show() Skip SMB sessions that are being teared down (e.g. @ses->ses_status == SES_EXITING) in cifs_debug_data_proc_show() to avoid use-after-free in @ses. This fixes the following GPF when reading from /proc/fs/cifs/DebugData while mounting and umounting [ 816.251274] general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6d81: 0000 [#1] PREEMPT SMP NOPTI ... [ 816.260138] Call Trace: [ 816.260329] <TASK> [ 816.260499] ? die_addr+0x36/0x90 [ 816.260762] ? exc_general_protection+0x1b3/0x410 [ 816.261126] ? asm_exc_general_protection+0x26/0x30 [ 816.261502] ? cifs_debug_tcon+0xbd/0x240 [cifs] [ 816.261878] ? cifs_debug_tcon+0xab/0x240 [cifs] [ 816.262249] cifs_debug_data_proc_show+0x516/0xdb0 [cifs] [ 816.262689] ? seq_read_iter+0x379/0x470 [ 816.262995] seq_read_iter+0x118/0x470 [ 816.263291] proc_reg_read_iter+0x53/0x90 [ 816.263596] ? srso_alias_return_thunk+0x5/0x7f [ 816.263945] vfs_read+0x201/0x350 [ 816.264211] ksys_read+0x75/0x100 [ 816.264472] do_syscall_64+0x3f/0x90 [ 816.264750] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 816.265135] RIP: 0033:0x7fd5e669d381 | ||||
| CVE-2023-52572 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix UAF in cifs_demultiplex_thread() There is a UAF when xfstests on cifs: BUG: KASAN: use-after-free in smb2_is_network_name_deleted+0x27/0x160 Read of size 4 at addr ffff88810103fc08 by task cifsd/923 CPU: 1 PID: 923 Comm: cifsd Not tainted 6.1.0-rc4+ #45 ... Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 kasan_check_range+0x145/0x1a0 smb2_is_network_name_deleted+0x27/0x160 cifs_demultiplex_thread.cold+0x172/0x5a4 kthread+0x165/0x1a0 ret_from_fork+0x1f/0x30 </TASK> Allocated by task 923: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_slab_alloc+0x54/0x60 kmem_cache_alloc+0x147/0x320 mempool_alloc+0xe1/0x260 cifs_small_buf_get+0x24/0x60 allocate_buffers+0xa1/0x1c0 cifs_demultiplex_thread+0x199/0x10d0 kthread+0x165/0x1a0 ret_from_fork+0x1f/0x30 Freed by task 921: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x143/0x1b0 kmem_cache_free+0xe3/0x4d0 cifs_small_buf_release+0x29/0x90 SMB2_negotiate+0x8b7/0x1c60 smb2_negotiate+0x51/0x70 cifs_negotiate_protocol+0xf0/0x160 cifs_get_smb_ses+0x5fa/0x13c0 mount_get_conns+0x7a/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The UAF is because: mount(pid: 921) | cifsd(pid: 923) -------------------------------|------------------------------- | cifs_demultiplex_thread SMB2_negotiate | cifs_send_recv | compound_send_recv | smb_send_rqst | wait_for_response | wait_event_state [1] | | standard_receive3 | cifs_handle_standard | handle_mid | mid->resp_buf = buf; [2] | dequeue_mid [3] KILL the process [4] | resp_iov[i].iov_base = buf | free_rsp_buf [5] | | is_network_name_deleted [6] | callback 1. After send request to server, wait the response until mid->mid_state != SUBMITTED; 2. Receive response from server, and set it to mid; 3. Set the mid state to RECEIVED; 4. Kill the process, the mid state already RECEIVED, get 0; 5. Handle and release the negotiate response; 6. UAF. It can be easily reproduce with add some delay in [3] - [6]. Only sync call has the problem since async call's callback is executed in cifsd process. Add an extra state to mark the mid state to READY before wakeup the waitter, then it can get the resp safely. | ||||
| CVE-2022-50256 | 1 Linux | 1 Linux Kernel | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/meson: remove drm bridges at aggregate driver unbind time drm bridges added by meson_encoder_hdmi_init and meson_encoder_cvbs_init were not manually removed at module unload time, which caused dangling references to freed memory to remain linked in the global bridge_list. When loading the driver modules back in, the same functions would again call drm_bridge_add, and when traversing the global bridge_list, would end up peeking into freed memory. Once again KASAN revealed the problem: [ +0.000095] ============================================================= [ +0.000008] BUG: KASAN: use-after-free in __list_add_valid+0x9c/0x120 [ +0.000018] Read of size 8 at addr ffff00003da291f0 by task modprobe/2483 [ +0.000018] CPU: 3 PID: 2483 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1 [ +0.000011] Hardware name: Hardkernel ODROID-N2Plus (DT) [ +0.000008] Call trace: [ +0.000006] dump_backtrace+0x1ec/0x280 [ +0.000012] show_stack+0x24/0x80 [ +0.000008] dump_stack_lvl+0x98/0xd4 [ +0.000011] print_address_description.constprop.0+0x80/0x520 [ +0.000011] print_report+0x128/0x260 [ +0.000008] kasan_report+0xb8/0xfc [ +0.000008] __asan_report_load8_noabort+0x3c/0x50 [ +0.000009] __list_add_valid+0x9c/0x120 [ +0.000009] drm_bridge_add+0x6c/0x104 [drm] [ +0.000165] dw_hdmi_probe+0x1900/0x2360 [dw_hdmi] [ +0.000022] meson_dw_hdmi_bind+0x520/0x814 [meson_dw_hdmi] [ +0.000014] component_bind+0x174/0x520 [ +0.000012] component_bind_all+0x1a8/0x38c [ +0.000010] meson_drv_bind_master+0x5e8/0xb74 [meson_drm] [ +0.000032] meson_drv_bind+0x20/0x2c [meson_drm] [ +0.000027] try_to_bring_up_aggregate_device+0x19c/0x390 [ +0.000010] component_master_add_with_match+0x1c8/0x284 [ +0.000009] meson_drv_probe+0x274/0x280 [meson_drm] [ +0.000026] platform_probe+0xd0/0x220 [ +0.000009] really_probe+0x3ac/0xa80 [ +0.000009] __driver_probe_device+0x1f8/0x400 [ +0.000009] driver_probe_device+0x68/0x1b0 [ +0.000009] __driver_attach+0x20c/0x480 [ +0.000008] bus_for_each_dev+0x114/0x1b0 [ +0.000009] driver_attach+0x48/0x64 [ +0.000008] bus_add_driver+0x390/0x564 [ +0.000009] driver_register+0x1a8/0x3e4 [ +0.000009] __platform_driver_register+0x6c/0x94 [ +0.000008] meson_drm_platform_driver_init+0x3c/0x1000 [meson_drm] [ +0.000027] do_one_initcall+0xc4/0x2b0 [ +0.000011] do_init_module+0x154/0x570 [ +0.000011] load_module+0x1a78/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000009] __arm64_sys_init_module+0x78/0xb0 [ +0.000009] invoke_syscall+0x74/0x260 [ +0.000009] el0_svc_common.constprop.0+0xcc/0x260 [ +0.000008] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000012] el0t_64_sync_handler+0x11c/0x150 [ +0.000008] el0t_64_sync+0x18c/0x190 [ +0.000016] Allocated by task 879: [ +0.000008] kasan_save_stack+0x2c/0x5c [ +0.000011] __kasan_kmalloc+0x90/0xd0 [ +0.000007] __kmalloc+0x278/0x4a0 [ +0.000011] mpi_resize+0x13c/0x1d0 [ +0.000011] mpi_powm+0xd24/0x1570 [ +0.000009] rsa_enc+0x1a4/0x30c [ +0.000009] pkcs1pad_verify+0x3f0/0x580 [ +0.000009] public_key_verify_signature+0x7a8/0xba4 [ +0.000010] public_key_verify_signature_2+0x40/0x60 [ +0.000008] verify_signature+0xb4/0x114 [ +0.000008] pkcs7_validate_trust_one.constprop.0+0x3b8/0x574 [ +0.000009] pkcs7_validate_trust+0xb8/0x15c [ +0.000008] verify_pkcs7_message_sig+0xec/0x1b0 [ +0.000012] verify_pkcs7_signature+0x78/0xac [ +0.000007] mod_verify_sig+0x110/0x190 [ +0.000009] module_sig_check+0x114/0x1e0 [ +0.000009] load_module+0xa0/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000008] __arm64_sys_init_module+0x78/0xb0 [ +0.000008] invoke_syscall+0x74/0x260 [ +0.000009] el0_svc_common.constprop.0+0x1a8/0x260 [ +0.000008] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000009] el0t_64_sync_handler+0x11c/0x150 [ +0.000009] el0t_64 ---truncated--- | ||||
| CVE-2025-11460 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-11-25 | 8.8 High |
| Use after free in Storage in Google Chrome prior to 141.0.7390.65 allowed a remote attacker to execute arbitrary code via a crafted video file. (Chromium security severity: High) | ||||
| CVE-2025-11756 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-11-25 | 8.8 High |
| Use after free in Safe Browsing in Google Chrome prior to 141.0.7390.107 allowed a remote attacker who had compromised the renderer process to potentially perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-13020 | 1 Mozilla | 2 Firefox, Firefox Esr | 2025-11-25 | 8.8 High |
| Use-after-free in the WebRTC: Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5. | ||||
| CVE-2022-50241 | 1 Linux | 1 Linux Kernel | 2025-11-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: NFSD: fix use-after-free on source server when doing inter-server copy Use-after-free occurred when the laundromat tried to free expired cpntf_state entry on the s2s_cp_stateids list after inter-server copy completed. The sc_cp_list that the expired copy state was inserted on was already freed. When COPY completes, the Linux client normally sends LOCKU(lock_state x), FREE_STATEID(lock_state x) and CLOSE(open_state y) to the source server. The nfs4_put_stid call from nfsd4_free_stateid cleans up the copy state from the s2s_cp_stateids list before freeing the lock state's stid. However, sometimes the CLOSE was sent before the FREE_STATEID request. When this happens, the nfsd4_close_open_stateid call from nfsd4_close frees all lock states on its st_locks list without cleaning up the copy state on the sc_cp_list list. When the time the FREE_STATEID arrives the server returns BAD_STATEID since the lock state was freed. This causes the use-after-free error to occur when the laundromat tries to free the expired cpntf_state. This patch adds a call to nfs4_free_cpntf_statelist in nfsd4_close_open_stateid to clean up the copy state before calling free_ol_stateid_reaplist to free the lock state's stid on the reaplist. | ||||
| CVE-2023-53153 | 1 Linux | 1 Linux Kernel | 2025-11-24 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Fix use after free for wext Key information in wext.connect is not reset on (re)connect and can hold data from a previous connection. Reset key data to avoid that drivers or mac80211 incorrectly detect a WEP connection request and access the freed or already reused memory. Additionally optimize cfg80211_sme_connect() and avoid an useless schedule of conn_work. | ||||
| CVE-2022-50243 | 1 Linux | 1 Linux Kernel | 2025-11-24 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: sctp: handle the error returned from sctp_auth_asoc_init_active_key When it returns an error from sctp_auth_asoc_init_active_key(), the active_key is actually not updated. The old sh_key will be freeed while it's still used as active key in asoc. Then an use-after-free will be triggered when sending patckets, as found by syzbot: sctp_auth_shkey_hold+0x22/0xa0 net/sctp/auth.c:112 sctp_set_owner_w net/sctp/socket.c:132 [inline] sctp_sendmsg_to_asoc+0xbd5/0x1a20 net/sctp/socket.c:1863 sctp_sendmsg+0x1053/0x1d50 net/sctp/socket.c:2025 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:734 This patch is to fix it by not replacing the sh_key when it returns errors from sctp_auth_asoc_init_active_key() in sctp_auth_set_key(). For sctp_auth_set_active_key(), old active_key_id will be set back to asoc->active_key_id when the same thing happens. | ||||
| CVE-2022-50245 | 1 Linux | 1 Linux Kernel | 2025-11-24 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: rapidio: fix possible UAF when kfifo_alloc() fails If kfifo_alloc() fails in mport_cdev_open(), goto err_fifo and just free priv. But priv is still in the chdev->file_list, then list traversal may cause UAF. This fixes the following smatch warning: drivers/rapidio/devices/rio_mport_cdev.c:1930 mport_cdev_open() warn: '&priv->list' not removed from list | ||||
| CVE-2025-38703 | 1 Linux | 1 Linux Kernel | 2025-11-24 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe: Make dma-fences compliant with the safe access rules Xe can free some of the data pointed to by the dma-fences it exports. Most notably the timeline name can get freed if userspace closes the associated submit queue. At the same time the fence could have been exported to a third party (for example a sync_fence fd) which will then cause an use- after-free on subsequent access. To make this safe we need to make the driver compliant with the newly documented dma-fence rules. Driver has to ensure a RCU grace period between signalling a fence and freeing any data pointed to by said fence. For the timeline name we simply make the queue be freed via kfree_rcu and for the shared lock associated with multiple queues we add a RCU grace period before freeing the per GT structure holding the lock. | ||||
| CVE-2022-50240 | 1 Linux | 1 Linux Kernel | 2025-11-24 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: android: binder: stop saving a pointer to the VMA Do not record a pointer to a VMA outside of the mmap_lock for later use. This is unsafe and there are a number of failure paths *after* the recorded VMA pointer may be freed during setup. There is no callback to the driver to clear the saved pointer from generic mm code. Furthermore, the VMA pointer may become stale if any number of VMA operations end up freeing the VMA so saving it was fragile to being with. Instead, change the binder_alloc struct to record the start address of the VMA and use vma_lookup() to get the vma when needed. Add lockdep mmap_lock checks on updates to the vma pointer to ensure the lock is held and depend on that lock for synchronization of readers and writers - which was already the case anyways, so the smp_wmb()/smp_rmb() was not necessary. [akpm@linux-foundation.org: fix drivers/android/binder_alloc_selftest.c] | ||||
| CVE-2025-59238 | 1 Microsoft | 10 365, 365 Apps, Office and 7 more | 2025-11-22 | 7.8 High |
| Use after free in Microsoft Office PowerPoint allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-59227 | 1 Microsoft | 12 365, 365 Apps, Office and 9 more | 2025-11-22 | 7.8 High |
| Use after free in Microsoft Office allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-59226 | 1 Microsoft | 6 365, 365 Apps, Office 2021 and 3 more | 2025-11-22 | 7.8 High |
| Use after free in Microsoft Office Visio allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-59225 | 1 Microsoft | 12 365, 365 Apps, Excel and 9 more | 2025-11-22 | 7.8 High |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-59224 | 1 Microsoft | 13 365, 365 Apps, Excel and 10 more | 2025-11-22 | 7.8 High |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. | ||||