Filtered by vendor Linux Subscriptions
Total 16300 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-53743 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Free released resource after coalescing release_resource() doesn't actually free the resource or resource list entry so free the resource list entry to avoid a leak.
CVE-2023-53745 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: um: vector: Fix memory leak in vector_config If the return value of the uml_parse_vector_ifspec function is NULL, we should call kfree(params) to prevent memory leak.
CVE-2023-53759 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: hidraw: fix data race on device refcount The hidraw_open() function increments the hidraw device reference counter. The counter has no dedicated synchronization mechanism, resulting in a potential data race when concurrently opening a device. The race is a regression introduced by commit 8590222e4b02 ("HID: hidraw: Replace hidraw device table mutex with a rwsem"). While minors_rwsem is intended to protect the hidraw_table itself, by instead acquiring the lock for writing, the reference counter is also protected. This is symmetrical to hidraw_release().
CVE-2025-40312 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: Verify inode mode when loading from disk The inode mode loaded from corrupted disk can be invalid. Do like what commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk") does.
CVE-2025-40318 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once hci_cmd_sync_dequeue_once() does lookup and then cancel the entry under two separate lock sections. Meanwhile, hci_cmd_sync_work() can also delete the same entry, leading to double list_del() and "UAF". Fix this by holding cmd_sync_work_lock across both lookup and cancel, so that the entry cannot be removed concurrently.
CVE-2025-40322 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbdev: bitblit: bound-check glyph index in bit_putcs* bit_putcs_aligned()/unaligned() derived the glyph pointer from the character value masked by 0xff/0x1ff, which may exceed the actual font's glyph count and read past the end of the built-in font array. Clamp the index to the actual glyph count before computing the address. This fixes a global out-of-bounds read reported by syzbot.
CVE-2025-40323 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbcon: Set fb_display[i]->mode to NULL when the mode is released Recently, we discovered the following issue through syzkaller: BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0 Read of size 4 at addr ff11000001b3c69c by task syz.xxx ... Call Trace: <TASK> dump_stack_lvl+0xab/0xe0 print_address_description.constprop.0+0x2c/0x390 print_report+0xb9/0x280 kasan_report+0xb8/0xf0 fb_mode_is_equal+0x285/0x2f0 fbcon_mode_deleted+0x129/0x180 fb_set_var+0xe7f/0x11d0 do_fb_ioctl+0x6a0/0x750 fb_ioctl+0xe0/0x140 __x64_sys_ioctl+0x193/0x210 do_syscall_64+0x5f/0x9c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Based on experimentation and analysis, during framebuffer unregistration, only the memory of fb_info->modelist is freed, without setting the corresponding fb_display[i]->mode to NULL for the freed modes. This leads to UAF issues during subsequent accesses. Here's an example of reproduction steps: 1. With /dev/fb0 already registered in the system, load a kernel module to register a new device /dev/fb1; 2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP); 3. Switch console from fb to VGA (to allow normal rmmod of the ko); 4. Unload the kernel module, at this point fb1's modelist is freed, leaving a wild pointer in fb_display[]; 5. Trigger the bug via system calls through fb0 attempting to delete a mode from fb0. Add a check in do_unregister_framebuffer(): if the mode to be freed exists in fb_display[], set the corresponding mode pointer to NULL.
CVE-2022-50630 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: hugetlb: fix UAF in hugetlb_handle_userfault The vma_lock and hugetlb_fault_mutex are dropped before handling userfault and reacquire them again after handle_userfault(), but reacquire the vma_lock could lead to UAF[1,2] due to the following race, hugetlb_fault hugetlb_no_page /*unlock vma_lock */ hugetlb_handle_userfault handle_userfault /* unlock mm->mmap_lock*/ vm_mmap_pgoff do_mmap mmap_region munmap_vma_range /* clean old vma */ /* lock vma_lock again <--- UAF */ /* unlock vma_lock */ Since the vma_lock will unlock immediately after hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in hugetlb_handle_userfault() to fix the issue. [1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/ [2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/
CVE-2025-40319 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Sync pending IRQ work before freeing ring buffer Fix a race where irq_work can be queued in bpf_ringbuf_commit() but the ring buffer is freed before the work executes. In the syzbot reproducer, a BPF program attached to sched_switch triggers bpf_ringbuf_commit(), queuing an irq_work. If the ring buffer is freed before this work executes, the irq_work thread may accesses freed memory. Calling `irq_work_sync(&rb->work)` ensures that all pending irq_work complete before freeing the buffer.
CVE-2025-33202 3 Linux, Microsoft, Nvidia 4 Linux, Linux Kernel, Windows and 1 more 2025-12-08 6.5 Medium
NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where an attacker could cause a stack overflow by sending extra-large payloads. A successful exploit of this vulnerability might lead to denial of service.
CVE-2025-11935 3 Apple, Linux, Wolfssl 3 Macos, Linux Kernel, Wolfssl 2025-12-08 7.5 High
With TLS 1.3 pre-shared key (PSK) a malicious or faulty server could ignore the request for PFS (perfect forward secrecy) and the client would continue on with the connection using PSK without PFS. This happened when a server responded to a ClientHello containing psk_dhe_ke without a key_share extension. The re-use of an authenticated PSK connection that on the clients side unexpectedly did not have PFS, reduces the security of the connection.
CVE-2025-11934 3 Apple, Linux, Wolfssl 3 Macos, Linux Kernel, Wolfssl 2025-12-08 2.7 Low
Improper input validation in the TLS 1.3 CertificateVerify signature algorithm negotiation in wolfSSL 5.8.2 and earlier on multiple platforms allows for downgrading the signature algorithm used. For example when a client sends ECDSA P521 as the supported signature algorithm the server previously could respond as ECDSA P256 being the accepted signature algorithm and the connection would continue with using ECDSA P256, if the client supports ECDSA P256.
CVE-2025-11933 3 Apple, Linux, Wolfssl 3 Macos, Linux Kernel, Wolfssl 2025-12-08 6.5 Medium
Improper Input Validation in the TLS 1.3 CKS extension parsing in wolfSSL 5.8.2 and earlier on multiple platforms allows a remote unauthenticated attacker to potentially cause a denial-of-service via a crafted ClientHello message with duplicate CKS extensions.
CVE-2025-40264 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: be2net: pass wrb_params in case of OS2BMC be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL at be_send_pkt_to_bmc() call site.  This may lead to dereferencing a NULL pointer when processing a workaround for specific packet, as commit bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6 packet") states. The correct way would be to pass the wrb_params from be_xmit().
CVE-2025-40263 1 Linux 1 Linux Kernel 2025-12-06 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: cros_ec_keyb - fix an invalid memory access If cros_ec_keyb_register_matrix() isn't called (due to `buttons_switches_only`) in cros_ec_keyb_probe(), `ckdev->idev` remains NULL. An invalid memory access is observed in cros_ec_keyb_process() when receiving an EC_MKBP_EVENT_KEY_MATRIX event in cros_ec_keyb_work() in such case. Unable to handle kernel read from unreadable memory at virtual address 0000000000000028 ... x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: input_event cros_ec_keyb_work blocking_notifier_call_chain ec_irq_thread It's still unknown about why the kernel receives such malformed event, in any cases, the kernel shouldn't access `ckdev->idev` and friends if the driver doesn't intend to initialize them.
CVE-2025-40262 1 Linux 1 Linux Kernel 2025-12-06 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: imx_sc_key - fix memory corruption on unload This is supposed to be "priv" but we accidentally pass "&priv" which is an address in the stack and so it will lead to memory corruption when the imx_sc_key_action() function is called. Remove the &.
CVE-2025-40261 1 Linux 1 Linux Kernel 2025-12-06 6.6 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme: nvme-fc: Ensure ->ioerr_work is cancelled in nvme_fc_delete_ctrl() nvme_fc_delete_assocation() waits for pending I/O to complete before returning, and an error can cause ->ioerr_work to be queued after cancel_work_sync() had been called. Move the call to cancel_work_sync() to be after nvme_fc_delete_association() to ensure ->ioerr_work is not running when the nvme_fc_ctrl object is freed. Otherwise the following can occur: [ 1135.911754] list_del corruption, ff2d24c8093f31f8->next is NULL [ 1135.917705] ------------[ cut here ]------------ [ 1135.922336] kernel BUG at lib/list_debug.c:52! [ 1135.926784] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 1135.931851] CPU: 48 UID: 0 PID: 726 Comm: kworker/u449:23 Kdump: loaded Not tainted 6.12.0 #1 PREEMPT(voluntary) [ 1135.943490] Hardware name: Dell Inc. PowerEdge R660/0HGTK9, BIOS 2.5.4 01/16/2025 [ 1135.950969] Workqueue: 0x0 (nvme-wq) [ 1135.954673] RIP: 0010:__list_del_entry_valid_or_report.cold+0xf/0x6f [ 1135.961041] Code: c7 c7 98 68 72 94 e8 26 45 fe ff 0f 0b 48 c7 c7 70 68 72 94 e8 18 45 fe ff 0f 0b 48 89 fe 48 c7 c7 80 69 72 94 e8 07 45 fe ff <0f> 0b 48 89 d1 48 c7 c7 a0 6a 72 94 48 89 c2 e8 f3 44 fe ff 0f 0b [ 1135.979788] RSP: 0018:ff579b19482d3e50 EFLAGS: 00010046 [ 1135.985015] RAX: 0000000000000033 RBX: ff2d24c8093f31f0 RCX: 0000000000000000 [ 1135.992148] RDX: 0000000000000000 RSI: ff2d24d6bfa1d0c0 RDI: ff2d24d6bfa1d0c0 [ 1135.999278] RBP: ff2d24c8093f31f8 R08: 0000000000000000 R09: ffffffff951e2b08 [ 1136.006413] R10: ffffffff95122ac8 R11: 0000000000000003 R12: ff2d24c78697c100 [ 1136.013546] R13: fffffffffffffff8 R14: 0000000000000000 R15: ff2d24c78697c0c0 [ 1136.020677] FS: 0000000000000000(0000) GS:ff2d24d6bfa00000(0000) knlGS:0000000000000000 [ 1136.028765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1136.034510] CR2: 00007fd207f90b80 CR3: 000000163ea22003 CR4: 0000000000f73ef0 [ 1136.041641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1136.048776] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 1136.055910] PKRU: 55555554 [ 1136.058623] Call Trace: [ 1136.061074] <TASK> [ 1136.063179] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.067540] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.071898] ? move_linked_works+0x4a/0xa0 [ 1136.075998] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.081744] ? __die_body.cold+0x8/0x12 [ 1136.085584] ? die+0x2e/0x50 [ 1136.088469] ? do_trap+0xca/0x110 [ 1136.091789] ? do_error_trap+0x65/0x80 [ 1136.095543] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.101289] ? exc_invalid_op+0x50/0x70 [ 1136.105127] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.110874] ? asm_exc_invalid_op+0x1a/0x20 [ 1136.115059] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.120806] move_linked_works+0x4a/0xa0 [ 1136.124733] worker_thread+0x216/0x3a0 [ 1136.128485] ? __pfx_worker_thread+0x10/0x10 [ 1136.132758] kthread+0xfa/0x240 [ 1136.135904] ? __pfx_kthread+0x10/0x10 [ 1136.139657] ret_from_fork+0x31/0x50 [ 1136.143236] ? __pfx_kthread+0x10/0x10 [ 1136.146988] ret_from_fork_asm+0x1a/0x30 [ 1136.150915] </TASK>
CVE-2025-40259 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Do not sleep in atomic context sg_finish_rem_req() calls blk_rq_unmap_user(). The latter function may sleep. Hence, call sg_finish_rem_req() with interrupts enabled instead of disabled.
CVE-2025-40258 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix race condition in mptcp_schedule_work() syzbot reported use-after-free in mptcp_schedule_work() [1] Issue here is that mptcp_schedule_work() schedules a work, then gets a refcount on sk->sk_refcnt if the work was scheduled. This refcount will be released by mptcp_worker(). [A] if (schedule_work(...)) { [B] sock_hold(sk); return true; } Problem is that mptcp_worker() can run immediately and complete before [B] We need instead : sock_hold(sk); if (schedule_work(...)) return true; sock_put(sk); [1] refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 29 at lib/refcount.c:25 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:25 Call Trace: <TASK> __refcount_add include/linux/refcount.h:-1 [inline] __refcount_inc include/linux/refcount.h:366 [inline] refcount_inc include/linux/refcount.h:383 [inline] sock_hold include/net/sock.h:816 [inline] mptcp_schedule_work+0x164/0x1a0 net/mptcp/protocol.c:943 mptcp_tout_timer+0x21/0xa0 net/mptcp/protocol.c:2316 call_timer_fn+0x17e/0x5f0 kernel/time/timer.c:1747 expire_timers kernel/time/timer.c:1798 [inline] __run_timers kernel/time/timer.c:2372 [inline] __run_timer_base+0x648/0x970 kernel/time/timer.c:2384 run_timer_base kernel/time/timer.c:2393 [inline] run_timer_softirq+0xb7/0x180 kernel/time/timer.c:2403 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] run_ktimerd+0xcf/0x190 kernel/softirq.c:1138 smpboot_thread_fn+0x542/0xa60 kernel/smpboot.c:160 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
CVE-2025-40257 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix a race in mptcp_pm_del_add_timer() mptcp_pm_del_add_timer() can call sk_stop_timer_sync(sk, &entry->add_timer) while another might have free entry already, as reported by syzbot. Add RCU protection to fix this issue. Also change confusing add_timer variable with stop_timer boolean. syzbot report: BUG: KASAN: slab-use-after-free in __timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616 Read of size 4 at addr ffff8880311e4150 by task kworker/1:1/44 CPU: 1 UID: 0 PID: 44 Comm: kworker/1:1 Not tainted syzkaller #0 PREEMPT_{RT,(full)} Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Workqueue: events mptcp_worker Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 __timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616 sk_stop_timer_sync+0x1b/0x90 net/core/sock.c:3631 mptcp_pm_del_add_timer+0x283/0x310 net/mptcp/pm.c:362 mptcp_incoming_options+0x1357/0x1f60 net/mptcp/options.c:1174 tcp_data_queue+0xca/0x6450 net/ipv4/tcp_input.c:5361 tcp_rcv_established+0x1335/0x2670 net/ipv4/tcp_input.c:6441 tcp_v4_do_rcv+0x98b/0xbf0 net/ipv4/tcp_ipv4.c:1931 tcp_v4_rcv+0x252a/0x2dc0 net/ipv4/tcp_ipv4.c:2374 ip_protocol_deliver_rcu+0x221/0x440 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x3bb/0x6f0 net/ipv4/ip_input.c:239 NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318 NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318 __netif_receive_skb_one_core net/core/dev.c:6079 [inline] __netif_receive_skb+0x143/0x380 net/core/dev.c:6192 process_backlog+0x31e/0x900 net/core/dev.c:6544 __napi_poll+0xb6/0x540 net/core/dev.c:7594 napi_poll net/core/dev.c:7657 [inline] net_rx_action+0x5f7/0xda0 net/core/dev.c:7784 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] __local_bh_enable_ip+0x1a0/0x2e0 kernel/softirq.c:302 mptcp_pm_send_ack net/mptcp/pm.c:210 [inline] mptcp_pm_addr_send_ack+0x41f/0x500 net/mptcp/pm.c:-1 mptcp_pm_worker+0x174/0x320 net/mptcp/pm.c:1002 mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762 process_one_work kernel/workqueue.c:3263 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 44: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:400 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:417 kasan_kmalloc include/linux/kasan.h:262 [inline] __kmalloc_cache_noprof+0x1ef/0x6c0 mm/slub.c:5748 kmalloc_noprof include/linux/slab.h:957 [inline] mptcp_pm_alloc_anno_list+0x104/0x460 net/mptcp/pm.c:385 mptcp_pm_create_subflow_or_signal_addr+0xf9d/0x1360 net/mptcp/pm_kernel.c:355 mptcp_pm_nl_fully_established net/mptcp/pm_kernel.c:409 [inline] __mptcp_pm_kernel_worker+0x417/0x1ef0 net/mptcp/pm_kernel.c:1529 mptcp_pm_worker+0x1ee/0x320 net/mptcp/pm.c:1008 mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762 process_one_work kernel/workqueue.c:3263 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 Freed by task 6630: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 __kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:587 kasan_save_free_info mm/kasan/kasan.h:406 [inline] poison_slab_object m ---truncated---