Total
6704 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49129 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-06 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix crash when startup fails. If the nic fails to start, it is possible that the reset_work has already been scheduled. Ensure the work item is canceled so we do not have use-after-free crash in case cleanup is called before the work item is executed. This fixes crash on my x86_64 apu2 when mt7921k radio fails to work. Radio still fails, but OS does not crash. | ||||
| CVE-2025-65955 | 1 Imagemagick | 1 Imagemagick | 2025-12-06 | 4.9 Medium |
| Further research determined the issue is not a vulnerability. | ||||
| CVE-2023-26226 | 1 Yandex | 1 Yandex Browser | 2025-12-05 | 9.8 Critical |
| A use after free memory corruption issue exists in Yandex Browser for Desktop prior to version 24.4.0.682 | ||||
| CVE-2025-11979 | 1 Mongodb | 1 Mongodb | 2025-12-04 | 5.3 Medium |
| An authorized user may crash the MongoDB server by causing buffer over-read. This can be done by issuing a DDL operation while queries are being issued, under some conditions. This issue affects MongoDB Server v7.0 versions prior to 7.0.25, MongoDB Server v8.0 versions prior to 8.0.15, and MongoDB Server version 8.2.0. | ||||
| CVE-2025-13633 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-12-04 | 8.8 High |
| Use after free in Digital Credentials in Google Chrome prior to 143.0.7499.41 allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-13638 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-12-04 | 8.8 High |
| Use after free in Media Stream in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2022-50283 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: mtd: core: add missing of_node_get() in dynamic partitions code This fixes unbalanced of_node_put(): [ 1.078910] 6 cmdlinepart partitions found on MTD device gpmi-nand [ 1.085116] Creating 6 MTD partitions on "gpmi-nand": [ 1.090181] 0x000000000000-0x000008000000 : "nandboot" [ 1.096952] 0x000008000000-0x000009000000 : "nandfit" [ 1.103547] 0x000009000000-0x00000b000000 : "nandkernel" [ 1.110317] 0x00000b000000-0x00000c000000 : "nanddtb" [ 1.115525] ------------[ cut here ]------------ [ 1.120141] refcount_t: addition on 0; use-after-free. [ 1.125328] WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0xdc/0x148 [ 1.133528] Modules linked in: [ 1.136589] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc7-next-20220930-04543-g8cf3f7 [ 1.146342] Hardware name: Freescale i.MX8DXL DDR3L EVK (DT) [ 1.151999] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1.158965] pc : refcount_warn_saturate+0xdc/0x148 [ 1.163760] lr : refcount_warn_saturate+0xdc/0x148 [ 1.168556] sp : ffff800009ddb080 [ 1.171866] x29: ffff800009ddb080 x28: ffff800009ddb35a x27: 0000000000000002 [ 1.179015] x26: ffff8000098b06ad x25: ffffffffffffffff x24: ffff0a00ffffff05 [ 1.186165] x23: ffff00001fdf6470 x22: ffff800009ddb367 x21: 0000000000000000 [ 1.193314] x20: ffff00001fdfebe8 x19: ffff00001fdfec50 x18: ffffffffffffffff [ 1.200464] x17: 0000000000000000 x16: 0000000000000118 x15: 0000000000000004 [ 1.207614] x14: 0000000000000fff x13: ffff800009bca248 x12: 0000000000000003 [ 1.214764] x11: 00000000ffffefff x10: c0000000ffffefff x9 : 4762cb2ccb52de00 [ 1.221914] x8 : 4762cb2ccb52de00 x7 : 205d313431303231 x6 : 312e31202020205b [ 1.229063] x5 : ffff800009d55c1f x4 : 0000000000000001 x3 : 0000000000000000 [ 1.236213] x2 : 0000000000000000 x1 : ffff800009954be6 x0 : 000000000000002a [ 1.243365] Call trace: [ 1.245806] refcount_warn_saturate+0xdc/0x148 [ 1.250253] kobject_get+0x98/0x9c [ 1.253658] of_node_get+0x20/0x34 [ 1.257072] of_fwnode_get+0x3c/0x54 [ 1.260652] fwnode_get_nth_parent+0xd8/0xf4 [ 1.264926] fwnode_full_name_string+0x3c/0xb4 [ 1.269373] device_node_string+0x498/0x5b4 [ 1.273561] pointer+0x41c/0x5d0 [ 1.276793] vsnprintf+0x4d8/0x694 [ 1.280198] vprintk_store+0x164/0x528 [ 1.283951] vprintk_emit+0x98/0x164 [ 1.287530] vprintk_default+0x44/0x6c [ 1.291284] vprintk+0xf0/0x134 [ 1.294428] _printk+0x54/0x7c [ 1.297486] of_node_release+0xe8/0x128 [ 1.301326] kobject_put+0x98/0xfc [ 1.304732] of_node_put+0x1c/0x28 [ 1.308137] add_mtd_device+0x484/0x6d4 [ 1.311977] add_mtd_partitions+0xf0/0x1d0 [ 1.316078] parse_mtd_partitions+0x45c/0x518 [ 1.320439] mtd_device_parse_register+0xb0/0x274 [ 1.325147] gpmi_nand_probe+0x51c/0x650 [ 1.329074] platform_probe+0xa8/0xd0 [ 1.332740] really_probe+0x130/0x334 [ 1.336406] __driver_probe_device+0xb4/0xe0 [ 1.340681] driver_probe_device+0x3c/0x1f8 [ 1.344869] __driver_attach+0xdc/0x1a4 [ 1.348708] bus_for_each_dev+0x80/0xcc [ 1.352548] driver_attach+0x24/0x30 [ 1.356127] bus_add_driver+0x108/0x1f4 [ 1.359967] driver_register+0x78/0x114 [ 1.363807] __platform_driver_register+0x24/0x30 [ 1.368515] gpmi_nand_driver_init+0x1c/0x28 [ 1.372798] do_one_initcall+0xbc/0x238 [ 1.376638] do_initcall_level+0x94/0xb4 [ 1.380565] do_initcalls+0x54/0x94 [ 1.384058] do_basic_setup+0x1c/0x28 [ 1.387724] kernel_init_freeable+0x110/0x188 [ 1.392084] kernel_init+0x20/0x1a0 [ 1.395578] ret_from_fork+0x10/0x20 [ 1.399157] ---[ end trace 0000000000000000 ]--- [ 1.403782] ------------[ cut here ]------------ | ||||
| CVE-2024-27308 | 2 Mio Project, Tokio | 2 Mio, Tokio | 2025-12-04 | 7.5 High |
| Mio is a Metal I/O library for Rust. When using named pipes on Windows, mio will under some circumstances return invalid tokens that correspond to named pipes that have already been deregistered from the mio registry. The impact of this vulnerability depends on how mio is used. For some applications, invalid tokens may be ignored or cause a warning or a crash. On the other hand, for applications that store pointers in the tokens, this vulnerability may result in a use-after-free. For users of Tokio, this vulnerability is serious and can result in a use-after-free in Tokio. The vulnerability is Windows-specific, and can only happen if you are using named pipes. Other IO resources are not affected. This vulnerability has been fixed in mio v0.8.11. All versions of mio between v0.7.2 and v0.8.10 are vulnerable. Tokio is vulnerable when you are using a vulnerable version of mio AND you are using at least Tokio v1.30.0. Versions of Tokio prior to v1.30.0 will ignore invalid tokens, so they are not vulnerable. Vulnerable libraries that use mio can work around this issue by detecting and ignoring invalid tokens. | ||||
| CVE-2016-5131 | 8 Apple, Canonical, Debian and 5 more | 18 Iphone Os, Mac Os X, Tvos and 15 more | 2025-12-04 | 8.8 High |
| Use-after-free vulnerability in libxml2 through 2.9.4, as used in Google Chrome before 52.0.2743.82, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to the XPointer range-to function. | ||||
| CVE-2022-50300 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when handling missing device in read_one_chunk Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721 | ||||
| CVE-2022-50305 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove() sof_es8336_remove() calls cancel_delayed_work(). However, that function does not wait until the work function finishes. This means that the callback function may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling cancel_delayed_work_sync(), which ensures that the work is properly cancelled, no longer running, and unable to re-schedule itself. | ||||
| CVE-2025-13120 | 1 Mruby | 1 Mruby | 2025-12-04 | 5.3 Medium |
| A vulnerability has been found in mruby up to 3.4.0. This vulnerability affects the function sort_cmp of the file src/array.c. Such manipulation leads to use after free. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is eb398971bfb43c38db3e04528b68ac9a7ce509bc. It is advisable to implement a patch to correct this issue. | ||||
| CVE-2022-50310 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed If the initialization fails in calling addrconf_init_net(), devconf_all is the pointer that has been released. Then ip6mr_sk_done() is called to release the net, accessing devconf->mc_forwarding directly causes invalid pointer access. The process is as follows: setup_net() ops_init() addrconf_init_net() all = kmemdup(...) ---> alloc "all" ... net->ipv6.devconf_all = all; __addrconf_sysctl_register() ---> failed ... kfree(all); ---> ipv6.devconf_all invalid ... ops_exit_list() ... ip6mr_sk_done() devconf = net->ipv6.devconf_all; //devconf is invalid pointer if (!devconf || !atomic_read(&devconf->mc_forwarding)) The following is the Call Trace information: BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0 Read of size 4 at addr ffff888075508e88 by task ip/14554 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 kasan_check_range+0x35/0x1b0 ip6mr_sk_done+0x112/0x3a0 rawv6_close+0x48/0x70 inet_release+0x109/0x230 inet6_release+0x4c/0x70 sock_release+0x87/0x1b0 igmp6_net_exit+0x6b/0x170 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f7963322547 </TASK> Allocated by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc_node_track_caller+0x4a/0xb0 kmemdup+0x28/0x60 addrconf_init_net+0x1be/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 addrconf_init_net+0x623/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 | ||||
| CVE-2023-53235 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/tests: helpers: Avoid a driver uaf when using __drm_kunit_helper_alloc_drm_device() the driver may be dereferenced by device-managed resources up until the device is freed, which is typically later than the kunit-managed resource code frees it. Fix this by simply make the driver device-managed as well. In short, the sequence leading to the UAF is as follows: INIT: Code allocates a struct device as a kunit-managed resource. Code allocates a drm driver as a kunit-managed resource. Code allocates a drm device as a device-managed resource. EXIT: Kunit resource cleanup frees the drm driver Kunit resource cleanup puts the struct device, which starts a device-managed resource cleanup device-managed cleanup calls drm_dev_put() drm_dev_put() dereferences the (now freed) drm driver -> Boom. Related KASAN message: [55272.551542] ================================================================== [55272.551551] BUG: KASAN: slab-use-after-free in drm_dev_put.part.0+0xd4/0xe0 [drm] [55272.551603] Read of size 8 at addr ffff888127502828 by task kunit_try_catch/10353 [55272.551612] CPU: 4 PID: 10353 Comm: kunit_try_catch Tainted: G U N 6.5.0-rc7+ #155 [55272.551620] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 0403 01/26/2021 [55272.551626] Call Trace: [55272.551629] <TASK> [55272.551633] dump_stack_lvl+0x57/0x90 [55272.551639] print_report+0xcf/0x630 [55272.551645] ? _raw_spin_lock_irqsave+0x5f/0x70 [55272.551652] ? drm_dev_put.part.0+0xd4/0xe0 [drm] [55272.551694] kasan_report+0xd7/0x110 [55272.551699] ? drm_dev_put.part.0+0xd4/0xe0 [drm] [55272.551742] drm_dev_put.part.0+0xd4/0xe0 [drm] [55272.551783] devres_release_all+0x15d/0x1f0 [55272.551790] ? __pfx_devres_release_all+0x10/0x10 [55272.551797] device_unbind_cleanup+0x16/0x1a0 [55272.551802] device_release_driver_internal+0x3e5/0x540 [55272.551808] ? kobject_put+0x5d/0x4b0 [55272.551814] bus_remove_device+0x1f1/0x3f0 [55272.551819] device_del+0x342/0x910 [55272.551826] ? __pfx_device_del+0x10/0x10 [55272.551830] ? lock_release+0x339/0x5e0 [55272.551836] ? kunit_remove_resource+0x128/0x290 [kunit] [55272.551845] ? __pfx_lock_release+0x10/0x10 [55272.551851] platform_device_del.part.0+0x1f/0x1e0 [55272.551856] ? _raw_spin_unlock_irqrestore+0x30/0x60 [55272.551863] kunit_remove_resource+0x195/0x290 [kunit] [55272.551871] ? _raw_spin_unlock_irqrestore+0x30/0x60 [55272.551877] kunit_cleanup+0x78/0x120 [kunit] [55272.551885] ? __kthread_parkme+0xc1/0x1f0 [55272.551891] ? __pfx_kunit_try_run_case_cleanup+0x10/0x10 [kunit] [55272.551900] ? __pfx_kunit_generic_run_threadfn_adapter+0x10/0x10 [kunit] [55272.551909] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit] [55272.551919] kthread+0x2e7/0x3c0 [55272.551924] ? __pfx_kthread+0x10/0x10 [55272.551929] ret_from_fork+0x2d/0x70 [55272.551935] ? __pfx_kthread+0x10/0x10 [55272.551940] ret_from_fork_asm+0x1b/0x30 [55272.551948] </TASK> [55272.551953] Allocated by task 10351: [55272.551956] kasan_save_stack+0x1c/0x40 [55272.551962] kasan_set_track+0x21/0x30 [55272.551966] __kasan_kmalloc+0x8b/0x90 [55272.551970] __kmalloc+0x5e/0x160 [55272.551976] kunit_kmalloc_array+0x1c/0x50 [kunit] [55272.551984] drm_exec_test_init+0xfa/0x2c0 [drm_exec_test] [55272.551991] kunit_try_run_case+0xdd/0x250 [kunit] [55272.551999] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit] [55272.552008] kthread+0x2e7/0x3c0 [55272.552012] ret_from_fork+0x2d/0x70 [55272.552017] ret_from_fork_asm+0x1b/0x30 [55272.552024] Freed by task 10353: [55272.552027] kasan_save_stack+0x1c/0x40 [55272.552032] kasan_set_track+0x21/0x30 [55272.552036] kasan_save_free_info+0x27/0x40 [55272.552041] __kasan_slab_free+0x106/0x180 [55272.552046] slab_free_freelist_hook+0xb3/0x160 [55272.552051] __kmem_cache_free+0xb2/0x290 [55272.552056] kunit_remove_resource+0x195/0x290 [kunit] [55272.552064] kunit_cleanup+0x7 ---truncated--- | ||||
| CVE-2022-50329 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'") will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq() can free bfqq first, and then call bic_set_bfqq(), which will cause uaf. Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq(). | ||||
| CVE-2022-50328 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: jbd2: fix potential use-after-free in jbd2_fc_wait_bufs In 'jbd2_fc_wait_bufs' use 'bh' after put buffer head reference count which may lead to use-after-free. So judge buffer if uptodate before put buffer head reference count. | ||||
| CVE-2025-62230 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-12-04 | 7.3 High |
| A flaw was discovered in the X.Org X server’s X Keyboard (Xkb) extension when handling client resource cleanup. The software frees certain data structures without properly detaching related resources, leading to a use-after-free condition. This can cause memory corruption or a crash when affected clients disconnect. | ||||
| CVE-2025-62229 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-12-04 | 7.3 High |
| A flaw was found in the X.Org X server and Xwayland when processing X11 Present extension notifications. Improper error handling during notification creation can leave dangling pointers that lead to a use-after-free condition. This can cause memory corruption or a crash, potentially allowing an attacker to execute arbitrary code or cause a denial of service. | ||||
| CVE-2025-20770 | 2 Google, Mediatek | 32 Android, Mt2718, Mt6739 and 29 more | 2025-12-03 | 6.7 Medium |
| In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4803. | ||||
| CVE-2025-20773 | 2 Google, Mediatek | 32 Android, Mt2718, Mt6739 and 29 more | 2025-12-03 | 6.7 Medium |
| In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4797. | ||||